
713

20

WEEK

33

2020
Finishing Touches:
Testing,
Debugging,
Upgrading, and
Maintaining

714

Finishing Touches
DAYDAY

20

Although your application is finished being coded, you shouldn’t consider your job
complete. There is still the need to test. In the process of testing (and in constructing)
an application, you may encounter problems that need to be resolved. In addition,
once others use your software, you’ll begin to get feedback of suggested changes or
additions. Today you will learn:

■ Why testing is important.

■ The different types and stages of testing.

■ The different categories of problems that may be found in an application.

■ Approaches to correcting common problems.

■ When an application is truly complete.

■ What happens after a program is released to others.

Why Test?
No program is perfectly written. In addition, when programming larger programs,
some requirements may have been forgotten or worse, changed. Testing should be
done to ensure the accuracy of the application and that all the requirements were
included. There are two things to consider about testing. The first is what level of
complexity you should incorporate into your testing. Second, you’ll need to consider
what types of tests will be performed.

The Complexity in Your Testing
The objective of testing is to ensure that there are no problems or errors in your
program. In addition, testing should confirm that your program does what was
intended. The level of detail involved in testing may determine the likelihood of
problems slipping through without being caught.

Expert Tip: Have someone test the application who is not familiar
with it. Because you have worked so closely to the application, you’ll
have a tendency to overlook things. A person unfamiliar with it will
lend a new perspective to it.

715

20

Many programmers consider testing to be the 15 minutes that they spend running the
program right after they code it. Testing can be as informal as this; however, generally,
it’s better to put in a little more time and effort. Following are some of the different
levels of detail that testing can entail. Generally, the greater the detail, the better the
chance to find problems. The list starts with the least detailed and increases in detail.

■ Free-form testing involves just using the application with no direction or
guidance. Free-form testing requires no preparation. The objective is to try
to cause problems just by using the software.

■ The next level is testing with an objective list. To give the testing some
direction, you should write down what should be accomplished by the test.
For example, in the Medium Code screen, the action bar should be tested,
along with each item on it, the help functions, the accelerator keys, the entry
of each field, the file functions, and so on. The testing is still performed in a
free-form manner; however, each objective should be covered in the free-
form testing.

■ Detailed checklist testing involves more work before testing begins. This is
an even higher degree of testing. You write out each specific area that should
be tested. For example, you can say to test the Exit on the File action bar,
the Add on the Edit action bar, the Update on the Edit action bar, and so
on. This ensures that every individual portion of the application is tested.

■ For an even higher degree of confidence in testing, you can script the steps
that the tester should follow. This is an expansion on creating the detailed
checklist in that the steps the user must take to test each item are included.
These steps can begin with starting the application and map each step and
each key that the user should enter. In this script testing, you are ensured
that everything is tested. (At least everything that is scripted.)

Note: When testing, you should enter both valid and invalid information
to ensure that the application works as expected. You should ensure that
the program can handle erroneous data. For example, a calculator pro-
gram should be able to handle a “divide by zero” error. This is true
regardless of which level of testing you perform.

716

Finishing Touches
DAYDAY

20

Different Types of Tests
In addition to the different levels of complexity that can be applied to testing, there
are also different categories of testing. There are four general categories of testing:

■ Unit testing

■ Integration testing

■ Alpha testing

■ Beta testing

 Warning: Many programmers don’t consider testing worth the time;
however, it only takes one serious problem to cause a user to not trust your
program. Once the trust in your program is lost, a user will be less inclined
to want to use it.

Unit Testing
Unit testing is the first category of testing. A unit is considered an individual part of
an application. For example, in the Record of Records! application, the main menu
is a separate piece of code that is compiled into an object file (.OBJ). You can test the
main menu to see that it works as expected. If it does work, you don’t need to
recompile its source file, RECOFREC.C. If you make a change to the Medium Code
screen, you’ll need to recompile the MEDIUM.C source file; however, you don’t need
to recompile RECOFREC.C. You can still use the RECOFREC.OBJ file. Because of
this, the main menu, RECOFREC.C, can be considered a separate unit from the
Medium Code screen, MEDIUM.C.

Expert Tip: While a unit test could span multiple source files, it’s best
to keep it at an object file level.

Some people choose to set up unit tests at a screen level. For an application such as the
Record of Records! application, you could have individual tests for the main
menu, the Medium Code screen, the Groups screen, and so on. Setting the unit tests
at the screen level is not as good as the object level for one simple reason. If a single
source file in the screen changes, then you need to re-unit test the entire screen.

717

20

A unit test can be at any of the levels mentioned in the previous section. It is
recommended that you don’t do free-form unit tests. At a minimum, you should have
a set of objectives to test for. A unit test should be performed when all the code for the
given unit is complete. There is no need to wait until the entire application is done
because other parts of the application shouldn’t cause changes to the unit.

If a problem is found when a unit test, or any other test, is performed, then you should
fix it. If you make a change to the code, the unit test should be rerun from the
beginning to ensure that nothing else changed. While this may seem tedious, it can
save you a lot of embarrassment later if you find a problem.

Integration Testing
Integration testing picks up where unit testing leaves off. Unit testing tested each of
the individual components of your application. Integration testing should test the
integration of the units with each other. Integration testing should be devoted to
testing that all the pieces work together. A large part of integration testing will revolve
around navigating through different parts of the application.

The Record of Records! application can be used for an example of one portion of an
integration test. A portion of an integration test for Record of Records! may start with
the adding of several records, followed by searching for the records, followed by
printing a report of the records. This will test to ensure that the report includes any
new records that were added. Another test may involve deleting records and then
trying to print the report to ensure that they were removed from the report also.

The level of complexity in integration testing is the same as the unit testing.
Integration tests can be as loose knit as free-form testing; however, it is again
recommended that, at a minimum, you develop a list of testing objectives. For a higher
chance of removing all the errors, you can move toward integration tests that are fully
scripted.

Note: An integration test should not include tests such as the following:

■ Does the date check to see that the month is from 1 to 12?

■ Is the dollar value greater than 0?

■ Does the Help panel display the correct data?

These are all unit test criteria—they affect only a single unit.

718

Finishing Touches
DAYDAY

20

Alpha Testing
Alpha testing is generally done by you or those you are working with. Alpha testing
begins where unit and integration testing ends. With alpha testing, you should use the
application as it is intended to be used. For an application such as Record of Records!,
you should enter valid medium codes, musical groups, and musical items. You should
also work with the reports, try all the help panels, and navigate through the action bar
options. You should store your own real-live data in the application and use it as it was
intended.

You may be wondering what the difference is between alpha testing and the preceding
unit and integration testing. The difference is how you test. In unit and integration
testing, the objective is to try to break the application so that you identify problems
before you ship it out. The objective of alpha testing is the opposite. It is to use the
application to ensure that it works as intended.

Beta Testing
When you first release your software, you may choose to do a beta test. Whereas you
perform an alpha test, beta testing should be done by others. You should find a small
number of people who will use the application. Each of these people should be given
a copy to use for a predetermined period of time. As these people use the program, they
should provide feedback on any problems or suggestions that they may have.

If the beta testers find any substantial changes, then you may need to restart the beta
test. This would be done by updating the software and then distributing new copies
of the software to each of the beta testers. You should actually release the software to
the public only when the beta testers and you are comfortable with the software.

Expert Tip: You should limit the number of beta testers that use your
software. You should choose testers that have a high probability of
using large portions of your application. The object of beta testing is
to have people use actual data in your application. This provides
confirmation that your program doesn’t have any dormant problems.

719

20

Type

Expert Tip: Beta testers are generally given their copies of the pre-
release software. In addition, beta testers are also generally given
production copies once the software is ready for public release.

Resolving Problems
How many programs have you written that have compiled and run perfectly the first
time? If your answer is one or more, then you may be an exceptional programmer.
Even when typing in code from a book such as this one, it’s not uncommon to
introduce mistakes. Before being able to fix problems, you need to be aware of the type
of problems that you can encounter.

Types of Problems
A mistake or error in a computer program is called a bug. There are two major
classifications for computer bugs:

■ Syntax errors

■ Logic errors

The Easy Bugs: Syntax Errors
Syntax errors are easy to spot because the compiler tells you about them. Syntax errors
are errors in the syntax or code that cause the compiler to have problems.

Some syntax problems cause errors, others cause only warnings. If only warnings are
caused, the program will still compile and create an executable program. If even one
error is caused, then the compiler won’t create an executable program. If you compile
the following listing, you should get syntax errors similar to those presented in the
output.

Listing 20.1. SYNTAX.C. A program with syntax errors.

1: /* Function: syntax.c
2: *
3: * Author: Bradley L. Jones
4: *

continues

720

Finishing Touches
DAYDAY

20

Listing 20.1. continued

5: * Purpose: A program with syntax errors
6: *--*/
7:
8: #include <stdio.h>
9:
10: int main(void)
11: {
12: char x;
13:
14:
15: if(x == 1)
16: {
17: printf(“Hey! The variable x is equal to 1!!!”);
18: }
19: else
20: {
21: printf(“Uh oh! The variable x is equals %d!!!”, x)
22: }
23:
24: printf(“\n\n”);
25:
26: scanf(“%d”, y);
27:
28: if(y == 1);
29: {
30: printf(“Wow! The variable y is equal to 1!!!”);
31: }
32: else
33: {
34: printf(“Bogus! The variable y is equals %d!!!”, y);
35: }
36: }

*** COMPILER STUFF ***
Error syntax.c 22: Statement missing ; in function main
Error syntax.c 26: Undefined symbol ‘y’ in function main
Error syntax.c 32: Misplaced else in function main
Error syntax.c 36: Compound statement missing } in function main
Warning syntax.c 36: Function should return a value in function main
*** 4 errors in Compile ***

As you can see, the errors presented tell you roughly what the problems are. Your
compiler may present the wording slightly differently than what is presented
here; however, it should pick up the same syntax errors.

Output

Analysis

721

20

Review Tip: Fix errors before warnings. A lot of times an error can
cause several warnings. Because of this, you could fix multiple prob-
lems by starting with the errors.

The Difficult Bugs: Logic Errors
Logic errors are much more difficult to spot and fix. A program can compile without
any syntax errors, but still contain several logic errors. A logic error is an error in how
something is being done. Following are several examples of logic errors:

for(x = 1; x < 10; x++);
{
 printf(“%d”, x);
}

At first glance, you may think that this is a syntax error; however, it is really a logic
error. If you didn’t spot the problem, the for statement has a semicolon at the end of
it. This means the output of this code fragment would be only the number 10 printed
once. If that was what the coder intended, then there is not an error here. If the
programmer expected 1 through 9 to print, then there is a logic error.

Following is another common logic error:

for(x = 1; x < 10; x++)
{
 do a bunch of stuff...
 x = 2;
 maybe do some more stuff...
}

Resetting a variable that is used in a loop can cause the loop to go on forever. This
wouldn’t cause an syntax error; however, there is a problem.

These are simple logic errors that can occur. More complex logic errors can occur as
you incorporate code that should do specific functions.

Note: A logic error is any piece of code that doesn’t perform as the
program specification stated it should, or as the programmer intended.

722

Finishing Touches
DAYDAY

20

The Oops! Factor: Recursive Errors
Although there are only two types of errors, what seems like a third type is often
mentioned. This is the recursive error. A recursive error is an error that occurs when
another error is fixed. (Oops!) You should work to avoid causing recursive errors by
thinking through your changes for syntax and logic errors.

Debugging
Removing bugs in code is called debugging. There are several ways of debugging a
program. Generally, the method used will be based on the type of problem. With
syntax errors, the compiler informs you of where the problem is. In addition to telling
you the problem, it tells you approximately what line the problem is on. By now, you
should be familiar with removing these kinds of problems.

For logic errors, debugging becomes much harder. Because the compiler doesn’t tell
you where the error is, you must find it yourself. There are several methods that you
can use to search out logic problems. The most common are the following:

■ Performing a walk-through

■ Using print statements

■ Using compiler functions and preprocessor directives

■ assert()

■ perror()

■ Using a debugger

To help you understand these methods, each will be covered.

Performing a Walk-Through
For programs that you are going to release either commercially or as shareware, you
should always do a complete walk-through. For any other program you create, you
should still do a walk-through. Hmmm, sounds like you should always do a walk-
through! Better yet, you should have someone else do a walk-through of your code
with you. A walk-through is the task of reading each line of code in a program.
Generally, the code is read in the order that it would be executed; however, some
people choose to read it starting at line one and working through to the end.

723

20

Type

Expert Tip: When walking through the code, it is best to walk-
through each line in the order that they would be executed.

A walk-through offers many benefits. The main benefit is that you’ll have a better
chance of understanding all of the code in your program. Secondly, you will be able
to identify unused code. You can do this by marking each line that is read. Any lines
that are not marked when the walk-through is complete shouldn’t be needed. A third
benefit is finding code that isn’t efficient. If you find that the same lines of code are
in several different locations, you’ll be able to pull them out into a single function.

A walk-through can also be used to find logic errors. By keeping track of the variables
in the code, and by determining what each line does, you can get an idea of what the
program is going to do. If you have a logic error you are trying to fix, then you should
be able to find it because you are, in essence, running the program.

Note: A walk-through can be automated by using a debugger. Debuggers
are covered later.

Using Print Statements
Some programmers choose to use print statements to debug a program. Using print
statements is probably the easiest method for debugging; however, it isn’t always
effective. Using print statements is straightforward. If you are testing to see that a
specific function is used, then a printf() call at the beginning can be used to signal
that you were there. A printf() statement can also be used to display the content of
any variables.

If you decide to use print statements, then you may also want to use preprocessor
directives. By including preprocessor directives, you won’t need to go through and
remove all the print statements when you are ready to create a final version. Consider
Listing 20.2.

Listing 20.2. LIST2002.C. A simple listing.

1: /* Function: LIST2002.c
2: *
3: * Author: Bradley L. Jones

continues

724

Finishing Touches
DAYDAY

20

Listing 20.2. continued

4: *
5: * Purpose: A program to print the average and total
6: * of 10 numbers.
7: *--*/
8:
9: #include <stdio.h>
10:
11: void main(void)
12: {
13: int nbrs[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
14: int avg;
15: int ttl;
16: int ctr;
17:
18: for(ctr = 1; ctr <= 10; ctr++)
19: {
20: ttl += nbrs[ctr];
21: }
22:
23: avg = ttl/10;
24:
25: printf(“\nThe total of the numbers is: %d”, ttl);
26: printf(“\nThe average of the numbers is: %d”, avg);
27: }

The total of the numbers is: 960
The average of the numbers is: 96

 Warning: Your output for this listing and the next may be slightly
different.

This listing has a problem. It prints the total and average of 10 numbers. The
actual total and average should be 55 and 5.5, not what was shown in the output.
This program has a problem that you may be able to easily spot; however, in a

more complex program, a similar problem may go undetected. Using print state-
ments, you can easily figure out the problem with this listing. Listing 20.3 contains
this same listing with print statements included. This listing also includes preproces-
sor directives for removing the print statements.

Output

Analysis

725

20

Type Listing 20.3. LIST2003.C. The simple listing updated.

1: /* Function: LIST2003.c
2: *
3: * Author: Bradley L. Jones
4: *
5: * Purpose: A program to print the average and total
6: * of 10 numbers with print statements.
7: *---*/
8:
9: #include <stdio.h>
10:
11: void main(void)
12: {
13: int nbrs[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
14: int avg;
15: int ttl;
16: int ctr;
17:
18: #ifndef NDEBUG
19:
20: printf(“Starting program....\n”);
21:
22: #endif
23:
24: for(ctr = 1; ctr <= 10; ctr++)
25: {
26: ttl += nbrs[ctr];
27:
28: #ifndef NDEBUG
29:
30: printf(“In loop, ttl = %d, ctr = nbrs[%d] = %d.\n”,
31: ttl, ctr, ctr, nbrs[ctr]);
32:
33: #endif
34:
35: }
36:
37: #ifndef NDEBUG
38:
39: printf(“Done with loop\n”);
40:
41: #endif
42:
43: avg = ttl/10;
44:
45: printf(“\nThe total of the numbers is: %d”, ttl);
46: printf(“\nThe average of the numbers is: %d”, avg);
47: }

726

Finishing Touches
DAYDAY

20

Starting program....
In loop, ttl = 988, ctr = nbrs[1] = 1.
In loop, ttl = 991, ctr = nbrs[2] = 2.
In loop, ttl = 995, ctr = nbrs[3] = 3.
In loop, ttl = 1000, ctr = nbrs[4] = 4.
In loop, ttl = 1006, ctr = nbrs[5] = 5.
In loop, ttl = 1013, ctr = nbrs[6] = 6.
In loop, ttl = 1021, ctr = nbrs[7] = 7.
In loop, ttl = 1030, ctr = nbrs[8] = 8.
In loop, ttl = 1040, ctr = nbrs[9] = 9.
In loop, ttl = 1040, ctr = nbrs[10] = 10.
Done with loop

The total of the numbers is: 1040
The average of the numbers is: 104

From the output, you should be able to see two different things. The first is that
the value of ttl starts out too high. Looking at the code, you will find that it was
never initialized. Secondly, you should notice that the subscripts start at 1 and

go to 10. They should have started at 0 and gone to 9. Knowing this, you can fix the
code and recompile a perfect program.

You should notice that preprocessor directives were used in this listing. If you
recompile this listing with NDEBUG defined, the print statements won’t be included.
NDEBUG can be defined in several ways. The best way to define it is by including a flag
when you compile. On the command line, this is done with the /D flag if you are using
a Microsoft or Borland compiler. If you compile this with NDEBUG defined, the results
are as follows:

The total of the numbers is: 960
The average of the numbers is: 96

Using Compiler Functions and Macros
The ANSI standard defines functions or macros that can help you in finding some
problems. These are assert() and perror(). Each has a different use that should be
examined separately.

Using assert()
The assert() macro is used to print a message when a predefined condition occurs.
If the predefined condition occurs, then the program automatically exits with the
following message:

Assertion failed: test_condition, file filename, line line_number

Output

Analysis

Output

727

20

Type

The test_condition is the condition that has been set up. The filename is the name
of the source file that the error occurred in. The line_number is the number of the line
in the source file where the error occurred.

The assert() macro is used in program development to determine where logic errors
are occurring. The format for using the assert() macro is as follows:

assert(condition);

When you use the assert() macro, you’ll want to make sure that the condition is one
that you expect to always remain true. Consider the program in Listing 20.4.

Listing 20.4. ASSERT.C. Using the assert() macro.

1: /* Function: Assert.c
2: *
3: * Author: Bradley L. Jones
4: *
5: * Purpose: Demonstrate assert()
6: *---*/
7:
8: #include <stdio.h>
9: #include <assert.h>
10:
11: void print_a_string(char *);
12:
13: int main(void)
14: {
15:
16: char *str1 = “test”;
17: char *str3 = “”;
18: char *str2 = NULL;
19:
20: printf(“\nTest 1:\n”);
21: print_a_string(str1);
22:
23: printf(“\nTest 2:\n”);
24: print_a_string(str2);
25:
26: printf(“\nTest 3:\n”);
27: print_a_string(str3);
28:
29: printf(“\nTest completed\n”);
30:
31: return 0;
32: }
33:
34:

continues

728

Finishing Touches
DAYDAY

20

Listing 20.4. continued

35: void print_a_string(char *string)
36: {
37: assert(string != NULL);
38:
39: printf(“The value of the string is: %s\n”, string);
40: }

Test 1:
The value of the string is: test

Test 2:
Assertion failed: string != NULL, file assert.c, line 37
Abnormal program termination

This program displays the assert() error the first time the print_a_string()
function receives a string that is NULL. Notice that the condition in the
assert() in line 37 has the condition of string != NULL. As long as this condition

is true, the assertion is ignored. When it evaluates untrue, then the assertion takes over,
prints the assert message, and terminates the program. As you can see, the second
string that was passed to print_a_string() was NULL. The third string was never
passed because the assert() function terminated the program.

You don’t need to remove the assert() calls from your program when you are done
with them. The assert() macro has been set up in a manner that enables you to turn
it off by defining a constant called NDEBUG (no debug). If you compile Listing 20.4 with
NDEBUG defined, the assert() macro is ignored. You can define NDEBUG in several ways.
You can use the #define preprocessor directive at the beginning of your listing in the
following format:

#define NDEBUG

This requires a coding change and, therefore, isn’t the optimal solution. Another
solution is to define NDEBUG when you compile the listing. This can be done using the
/D in the following manner if you are using the Borland Turbo C compiler:

TCC /DNDEBUG ASSERT.C

If you are using a Borland compiler or Microsoft compiler, then the /D parameter is
used in the same manner. If you are using a different compiler, then you should check
its manuals for the proper method of defining a constant when compiling. Following
is the output for the ASSERT.C listing with the NDEBUG constant being defined:

Output

Analysis

729

20Type

Test 1:
The value of the string is: test

Test 2:
The value of the string is: (null)

Test 3:
The value of the string is:

Test completed

Using perror()
The perror() function can also be used to help understand problems in your
programs. The perror() function is used to display a descriptive message for the last
system error that occurred. perror() prints a message to the stderr stream. The
stderr stream is usually the screen. The prototype for perror() is as follows:

void perror(const char *s);

As you can see, the perror() function takes a string as a parameter. When perror()
is called, this string is used to precede the last system error that occurred.

You may be wondering what kinds of system errors would allow a program to continue
executing. The ERRNO.H header file contains the numeric values and symbolic
constants for many of the errors that can be set into a behind-the-scenes variable called
errno. Most of these errors occur because of file I/O. For example, when you open a
file, you may not be successful. In the event that the file does not exist, errno is set to
ENOENT, which is the value 2. Consider the following listing. If the fopen() fails, then
the errno variable is set.

Listing 20.5. PERROR.C. Using the perror() function.

1: /* Function: perror.c
2: *
3: * Author: Bradley L. Jones
4: *
5: * Purpose: Demonstrate perror()
6: *--*/
7:
8: #include <stdio.h>
9: #include <errno.h> /* needed for error numbers */
10:
11:
12: int main(void)
13: {
14: FILE *fp1;

Output

continues

730

Finishing Touches
DAYDAY

20

Listing 20.5. continued

15: FILE *fp2;
16:
17:
18: if((fp1 = fopen(“perror.c”, “r”)) == NULL)
19: {
20: perror(“Big Problem Opening 1st File”);
21: }
22: else
23: {
24: fclose(fp1);
25: }
26:
27: if((fp2 = fopen(“abcdefg.hij”, “r”)) == NULL)
28: {
29: perror(“Big Problem Opening 2nd File”);
30: }
31: else
32: {
33: fclose(fp2);
34: }
35:
36: return 0;
37: }

Big Problem Opening 2nd File: No such file or directory

The output displayed shows the program being used with a file that exists and
a file that does not exist. As you can see, the perror() function concatenates the
system error message to the end of the message passed in the perror() function

call. Using the perror() function, you can display descriptive information to the user.
You should note, however, that the perror() command doesn’t take any corrective
action in regard to the error. This is left to you.

DO DON’T
DO use the NDEBUG constant to remove assert() commands, rather than
actually removing them from your listings.

DO use perror() to help display descriptive messages for system errors.

Output

Analysis

731

20

DON’T forget to provide corrective actions if your program has an error.

DON’T forget to include the ERRNO.H header file when using the
perror() function.

Using a Debugger
A debugger is an automated testing tool that is provided with most of the major
compilers. Many companies give their compilers names. For example, Borland’s
debugger is called Turbo Debugger. Microsoft’s debugger is called CodeView.

While every debugger is different, most offer similar capabilities. Following is a list of
several tasks that a debugger will enable you to do. By looking at the items in this list,
you should be able to see why a debugger could help you find coding problems.

Most debuggers can enable you to:

■ View your code as the program runs.

■ View the values stored in variables at any time during the execution of a
program.

■ Run a program one line at a time.

■ See the assembler-level code that your program is converted to when
compiled.

■ Change the value of variables while the program is running.

■ View or change what is stored in memory.

■ And much more.

In addition to the debugger that comes with your compiler, you can also purchase
other debugging tools. In addition to stand-alone debuggers, there are also special-
purpose debugging tools. Some tools work to ensure that your system is working with
the operating system, others work to ensure that you are using memory properly, some
show you what is happening at a machine level. Many of the supportive tools serve a
purpose. Depending on the complexity of your programs, these additional tools may
be worth the investment.

732

Finishing Touches
DAYDAY

20

Note: I use a program called Bounds Checker. This program is used to
ensure that you are using memory appropriately. Pointers cause a C
programmer more problems than anything else. Bounds Checker tracks
your use of pointers and memory. Bounds checker will inform you when
you use an uninitialized pointer. In addition, it will tell you when you
neglect to free memory. Because memory errors can be extremely hard to
track down, a tool such as Bounds Checker can help to prevent many
serious problems.

When Is an Application
Complete?

When you release a program to the public, you will invariably get feedback from some
of the users. Some users will make suggestions for improvements for your application.
Others will point out even the smallest of problems with your applications. You
should welcome these suggestions and comments.

At some point, you may choose to incorporate some of the suggestions and fix the
noted errors. In addition to these changes, you may also decide to make your own
additions to the application. Updating software with changes and enhancements such
as these is a common occurrence.

Three terms are used in making changes to your software. These are updates, patches,
and upgrades. A patch and an update are almost the same thing. When your program
has a serious problem that needs to be fixed as soon as possible, the change can be
distributed as a patch. A patch contains only what is needed to make the fix. An update
is similar to a patch in that it is a fix. An update is generally not as critical as a patch.
If the use of the software is not inhibited, then an update can be put out.

An upgrade is different. An upgrade may include patches and updates; however, an
upgrade will generally include updates to the software’s functionality also. Upgrades
should include any patches and updates that were already sent out at the initial release
or last upgrade to the software. When an upgrade is created, it is often released in the
same manner as the initial software. This includes adding a charge. If a charge is added,
then the upgrade should add enough functionality to warrant the price of the upgrade.

Generally, with the release of patches, updates, and upgrades, comes the changing of
the version number. Patches don’t always warrant version number changes; however,

733

20

updates and upgrades almost always do. By changing the version number, it helps you
to know what changes have been made. There is a pattern to how most version
numbers are changed.

Consider the Record of Records! application developed in this book. This application
was given the version number 1.00. This is the first release of the software, hence the
version number is set to 1.00. Each time an update or upgrade is sent out, a new version
number should be assigned. The change to the version number is generally reflective
of the level of the change. For example, if an update is being incorporated to fix a bug,
then the version may be changed to 1.01 to signify that the software has been changed.
When a change to the program’s functionality is done in an upgrade, then you may
consider renumbering the version to 1.1, 1.5, or 2.0, depending on the size of the
upgrade. If you are going to change the number to 2.0, then there should be highly
notable changes in the software.

Note: Some companies number their beta release of the software with a
number less than one.

This section started with the question: When is an application complete? You should
have the answer to this question by now. If you offer your software for sale, odds are
that your application will never be complete. There will always be upgrades that you
can make.

DO DON’T
DON’T send out an upgrade version of your software sooner than six
months after the last release. It’s best not to update more than once a year.

DO send out a patch if an error can cause problems for the user.

Summary
Today, you covered a lot of ground. First, you were presented with information on
the importance of testing and the different types of testing. Every application should
receive some testing. This testing can be unit testing, which tests only a portion of an

734

Finishing Touches
DAYDAY

20

application, integration testing, which tests the interaction of an application’s parts,
alpha testing, which tests to ensure that the program performs as it was intended, and
beta testing, which provides feedback from actual users.

In addition to testing, debugging was also covered. Debugging is the process of
removing bugs, or errors, from a program. These can be syntax errors, which are found
by the compiler, or logic errors, which require more effort to remove.

Once a program has been coded and tested, it is ready to be released; however, it may
not be complete. Once a program is given to users, they will generally provide
feedback. From this feedback, patches, updates, or upgrades may need to be made. A
patch is a single fix for a critical problem. Updates are fixes for problems or
enhancements that are not critical to the application. An upgrade is a larger release of
the program that may contain fixes and major updates and enhancements to the
program.

Q&A
Q What is the objective of a walk-through?

A The objective of a walk-through is the same as testing—to find any problems
and to ensure the software works as specified. Many people do two separate
walk-throughs. The first is a code walk-through to ensure the code is
accurate, efficient, and, if required, portable. The second is a logic walk-
through that checks to ensure the code is doing what is expected based on
the initial specification for the program.

Q Is a debugger worth the time it takes to learn?

A Yes. You don’t need to know everything about a debugger to get value from
it. Most people start by learning how to execute their programs a line at a
time. This, along with viewing variable contents, is generally an easy process.
You should learn how to use a debugger one process at a time.

Q Should additional debugging tools be purchased?

A Generally, most people don’t have the need for tools beyond the debugger
that comes with their compiler. If you are developing a large-scale applica-
tion, then tools such as memory viewers can be worth the investment. You
must weigh the cost of the tool with the expected results. For most people
doing development at home, the additional cost isn’t justified.

735

20

Q Do version numbers always follow a sequential numbering?

A No. Some companies choose to skip version numbers for multiple reasons.
Generally, this is done when the program has versions on multiple plat-
forms. For example, consider having a program for DOS with a version
number of 3.0. If you create a first release of a Windows product, although it
should be version 1.0, you may choose to give it version 3.0. If the Windows
and the DOS versions provide the same functionality, then you may want
the versions to be the same to avoid confusing the user.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned.

Quiz
1. What is free-form testing?

2. What are the four categories of testing mentioned in this chapter?

3. In what order should the four categories of testing from Question 2 be done?

4. When is testing complete?

5. What is a bug?

6. What is a syntax error?

7. What are the types of errors?

8. What is debugging?

9. What is the difference between a patch and an upgrade?

10. When is a software application complete?

Exercises
1. ON YOUR OWN: Consult your compiler to determine what its debugger

will do. Try using the debugger to walk through one of the Record of Records!
listings.

736

Finishing Touches
DAYDAY

20

2. ON YOUR OWN: Determine the type of testing that should be done with
the Record of Records! application.

3. ON YOUR OWN: Test your own applications.

4. ON YOUR OWN: Review the software packages that you have or those in a
store or magazine. Do the version numbers seem consistent?

