Building a
Routine Library

WEEK

332

Building a Routine Library

On Day 10, you were presented with a bunch of new functions. You'll use many of
these throughout the rest of the book. In addition to the functions presented on Day
10, you’ll also need to have several other functions available. Today you will:

O Learn about several functions that are important when creating applications.
0O Create several functions, among them:

0O Hide the cursor

0 Clear the screen (in color)

0 Display a grid (great for shadows)

O Learn how to overwrite and restore a screen.

Some Important Issues

When you are creating applications, there are several functions that are often not
thought of. Many of these functions can be easy to create. Today, you’ll be presented
with a few of these functions so that you can add them to your TYAC.LIB library. The
first two files presented are cursor_on() and cursor_off().

The cursor_off() Function

The cursor_off() function enables you to hide the cursor. There are several times in
running an application when the user is not entering data. During these times, the
cursor can become a nuisance. The cursor_off() function does just what its name
implies. It turns the cursor off.

Type Listing 11.1. CURSOFF.C. The cursor_off() function.

1: [
2: * Program: CURSOFF.C

3: * Authors: Bradley L. Jones

4: * Gregory L. Guntle

5: *

6: * Purpose: Turns the cursor off.

7: *

8: * Enter with: N/A

9: *

10: * Returns:

11: *

12: Bttt */
13:

#include <dos.h>
#include *““tyac.h”

void cursor_off()
{
union REGS inreg, outreg; /* Assembly Registers */
inreg.-h.ah 1; /* int 10h function 1 */
inreg.x.cx Ox0F00; /* Wrap cursor around to
turn it off */

int86(BI0S_VIDEO, &inreg, &outreg); /* BIOS Call */

short. This isa BIOS function similar to those that you have seen before. In this

function, the an register is set to function 1 (line 21). The BIOS video interrupt
is then called. The BIOS interrupt is interrupt 0x10h, which is defined in the
TYAC.H header file.

14
15
16
17
18
19
20
21
22
23
24
25
An alw As you can see, Listing 11.1 presents the cursor_off() function, which is very

The cursor_on() Function

Once you turn the cursor off, it remains off until you turn it on again. You'll need the
cursor back onwhen you are ready to have the user input data. You’ll also want to make
sure that if the cursor is turned off, you turn in back on before you exit your program.
Listing 11.2 presents cursor_on(), Which is a counter function to the cursor_off()

function.
‘ Warning: If you turn the cursor off and then exit the program, the cursor
@ may remain off.

Type Listing 11.2. CURSON.C. The cursor_on() function.

- [
* Program: CURSON.C

* Authors: Bradley L. Jones

* Gregory L. Guntle

Purpose: Turns the cursor on.

O~NO U WNPRP

ok % %

Enter with:

continues

333

334

Building a Routine Library

Listing 11.2. continued

9-

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

Returns:

* ok X %

#include <dos.h>
#include “tyac.h”

void cursor_on()

{
union REGS inreg, outreg;
inreg.h.ah = 1; /* int 10h function 1 */
inreg.x.cx = 0x0607; /* Cursor size for CGA/VGA */
int86(BI0S_VIDEO, &inreg, &outreg); /* BIOS call */

Aol

This function is almost identical to the cursor_off(function. The difference
is that the value in the x. cx register is set to 0x0607. This turns on a cursor that
is appropriate for most monitors.

Now that you have functions that can turn a cursor off and on, you are probably
interested in seeing them inaction. Listing 11.3 presents a small program that uses the
TYAC.LIB library. You should go ahead and compile the cursor functions and add
them to your library. You should also include prototypes in the TYAC.H header file.

=
)
D

Listing 11.3. LIST1103.C. Using the cursor functions.

O©CoO~NOOULA WNPRE

/*
* Filename: LIST1103.c

Author: Bradley L. Jones
Gregory L. Guntle

Purpose: Demonstrate the cursor on and off functions.

FoX X % %

*/

#include <stdio.h>
#include <conio.h> /* not an ANSI header, for getch() */
#include *““tyac.h”

void main(void)

15: {

16: cursor_off();

17:

18: box(12, 14, 20, 60, SINGLE_BOX, FILL_BOX, YELLOW, BLUE);
19:

20: write_string(“Press any key to continue...”,
21: YELLOW, BLUE, 13, 23);

22:

23: getch(Q);

24: cursor_onQ);

25: %}

Press any key to continue...

m This program displays a box on the screen with a message in it. Line 18 uses the
W box() function followed in line 20 by the write_string() function. Before
setting up this box, line 16 calls the cursor_off() function. This function could
have been called at any time before line 23. In line 23, the program pauses with a call
to getch(), which waits for any character to be entered. When a key is pressed, the
cursor_on() function returns the cursor.

If the cursor had not been turned off, it would be seen flashing on the screen when this
box is displayed. You can see this by commenting out line 16. Another good
experiment to try is to uncomment line 16 and then comment out line 24. This will
cause the cursor to not be turned back on when the program exits. By observing each
of these scenarios, you should begin to understand the importance of making sure you
know the condition of the cursor—either on or off.

Clearing the Screen

Clearing the screen can be very important. Most programs that work with the screen
will start by clearing the screen. You can never be sure about what is on the screen when

335

Building a Routine Library

you first starta program. Listing 11.4 presents a function that will effectively clear the
screen. In addition to removing everything on the screen, this function enables you
to state what colors the screen should be cleared to.

Listing 11.4. CLEARSCN.C. The clear_screen()

Type function.

1: /* Program: CLRSCRN.C

2: * Author: Bradley L. Jones

3: * Gregory L. Guntle

4: * Purpose: Function to clear the entire screen

5: * Borland offers a clrscr() function.

6: K
7: * Parameters:

8: * fcolor,

9: * bcolor colors for clearing screen
10: * */
11:

12: #include <dos.h>
13: #include “tyac.h”

14:

15: void clear_screen(int fcolor, int bcolor)
16: {

17: union REGS irreg;

18:

19: ireg.h.ah = SCROLL_UP;

20: ireg.h.al = 0; /* Clear entire screen area */
21: ireg.h.ch = 0;

22: ireg.h.cl = 0;

23: ireg.h.dh = 24;

24: ireg-h.dl = 79;

25: ireg.h.bh = (bcolor <<4) | fcolor;
26:

27: int86(BIOS_VIDEO, &ireg, &ireg);
28: }

Anal : This function provides a means to clear the screen. This is done by scrolling the
yS' information off of the screen; this is a common practice. As you can see, this
function enables you to set the foreground and background colors.

Borland If you are using the Borland compiler, you have the option of using a different
function. Borland provides a function called cirscr(), which clears the screen

336

without the option of setting the colors. You should remember that this is a Borland-
specific function and, as a result, may not be portable.

Listing 11.5 demonstrates clearing the screen. This listing enables you to clear the
screen several times before exiting.

Listing 11.5. TESTCLR.C. Test the clear_screen()

Type function.
1: /* Program: testclr.c
2: * Author: Bradley L. Jones
3: * Gregory L. Guntle
4: * Purpose: Demonstrate the clear_screen function.
5: * */
6:
7: #include <stdio.h>
8: #include <conio.h> /* not an ANSI header, for getch() */
9: #include *“‘tyac.h”
10:
11: void main(void)
12: {
13: int ctr = 0;
14: char buffer[40];
15:
16: cursor_off();
17:
18: for(ctr = 0; ctr < 16; ctr++)
19: {
20: clear_screen(GREEN, ctr);
21:
22: box(11, 14, 20, 60, SINGLE_BOX, FILL_BOX, YELLOW, BLUE);
23:
24: sprintf(buffer, “Trying background number %d of 16,
25: ctr+l);
26: write_string(buffer, YELLOW, BLUE, 12, 23);
27: write_string(“Press any key to continue...”,
28: YELLOW, BLUE, 13, 23);
29:
30: getch();
31: }
32:
33: clear_screen(GREEN, BLACK);
34: cursor_on(Q);
35: %}

337

71 This program enables you to see the different colors that the background can be
Analws cleared to. Asyou can see, the cursor_on() and cursor_off() functionsare used
to turn the cursor off at the beginning of the listing and then back on at the end

of the listing.

The for loop, which makes up the bulk of this program (lines 18 to 31), displays the
counter number, ctr, in a message box. Line 24 formats this counter number into a
descriptive message using sprintf(). The sprintf() function is a standard ANSI
function that enables you to format information into a string. Before formatting
buffer, line 22 displays a box similar to the box in Listing 11.3. Once the box is
displayed with its message, the program pauses and waits for the user to enter a key.
When a character is pressed, the for loop cycles through to the next counter value.
Thiscontinuesfor 16 iterations. Line 33 clears the screen one last time before restoring
the cursor and exiting.

The grid() Function

There are times when you’ll want to clear the screen to a textured background. There
are also times when you’ll want to create a shadow that is somewhat different than just
abox. Listing 11.6 presents a function called grid () that enables you to display a box
created with one of the ASCII grid characters.

Note: The ASCII grid values are:

¥ 176
+ 177
£ 178

338

Type Listing 11.6. GRID.C. The grid() function.

1: /* Program: GRID.C

2: * Authors: Bradley L. Jones

3: * Gregory L. Guntle

4: *

5: * Purpose: When passed the parameter list it displays
6: * a grid background using BIOS.

7: *

8: * Enter with: start_row, end_row (0-24)

9: * start_col, end_col (0-79)

10: * fcolor, bcolor

11: * gtype

12: e */
13:

14: #include <dos.h>
15: #include “tyac.h”

16:

17: wvoid grid(int start_row, int end_row,

18: int start_col, int end_col,

19: int fcolor, int bcolor, int gtype)

20: {

21: int row, col;

22:

23: /* grid types */

24: static unsigned char GRID_1[1] = “¥”; /* ASCII value 176 */
25: static unsigned char GRID_2[1] = “+”; /* ASCII value 177 */
26: static unsigned char GRID_3[1] = “£”; /* ASCII value 178 */
27: static unsigned char *GRID;

28:

29: switch (gtype)

30: {

31: case 1: GRID = GRID_1;

32: break;

33:

34: case 2: GRID = GRID_2;

35: break;

36:

37: case 3: GRID = GRID_3;

38: break;

39: }

40:

41: for (row=start_row; row < end_row+1l; row++)

42: {

43: for (col=start_col; col < end_col+1; col++)
44: {

45: cursor(row,col);

46: write_char((char)*GRID, fcolor, bcolor);
47: 3}

48: }

49: 3}

339

340

Building a Routine Library

T

Ana|y5| The grid function can be added to your TYAC.LIB library along with all the

other functions. In addition, you should add an appropriate prototype to your
TYAC.H header file.

Line 17 beginsthe grid) function. Asyou can see, there are several parameters being
passed. The starting row and column, along with the ending row and column, are
passed in the same manner as they were in the box() function. The foreground and
background colors are also passed so that the color of the grid is able to be customized.
The final parameter, gtype, is used to determine which ASCII grid character is used.

Line 21 declares two temporary variables, row and col, that will be used later in the
function to display the grid characters. Lines 24 to 27 set up the three different grid
characters. Line 28 contains a pointer that will be used in lines 29 to 39 to point to
the appropriate character based on the value passed in gtype. If gtype containsa 1,
thenthecrip_1characterwill be used. If gtype containsa2 or 3, thenGriID_20rGrID_3
will be used. The pointer from line 28 will be set to point at the appropriate character.

Lines41 to 49 contain two nested for loops that draw the grid character on the screen.
Using the for loops, the row and column values are incremented and a character is
written using write_char(). When the for loops are completed, the grid is drawn.

Listing 11.3 uses each of the three grid types. Thegrid() function is called three times
displaying boxes with each of the different grids.

TYPE| Listing 11.7. TESTGRID.C. Testing the grid() function.
1: /* Program: testgrid.c
2: * Author: Bradley L. Jones
3: * Gregory L. Guntle
4: * Purpose: Demonstrate the grid function.
5: * */
6:
7: #include *““tyac.h”
8:
9: int main(void)
10: {
11: grid(4,10,3,20,RED,GREEN,1);
12: grid(10,20,20,40,WHITE, BLUE,2);
13: grid(15,20,15,25,BRIGHTWHITE,CYAN, 3);
14:
15: return O;
16: }

Oumu C:\DOCS\BOOKNC21MORENCODENCHIL >testypid

C2\DOCS\BOOK\C21MORENCODENGH11>

Analw This listing is as straightforward as they can come. The grid () function is called
three times. You should notice that different parameters are passed that modify
the grids displayed. In addition to different grid styles, the location, size, and

colors also vary in each of the three calls.

Saving and Restoring the Screen

It’s quite useful when you can place itemson the screen and then remove them without
overwriting the underlying information. For example, if you use the box() function
to place a box with a message on the screen, you overwrite what was underneath. You
must redraw the screen to restore the lost information. By saving off a copy of the
screen, or a copy of the portion of the screen that will be overwritten, you can then
simply restore it when you are done.

To help you understand this, an example will be presented in Listing 11.10, but you
first need to see the save_screen_area() function in Listing 11.8 and the
restore_screen_area() function in Listing 11.9.

Listing 11.8. SAVESCRN.C. Saving a portion of

Type the screen.

/* Program: SAVESCRN.C

*

* Authors: Bradley L. Jones
* Gregory L. Guntle

*

s WNPE

continues

341

342

Building a Routine Library

Listing 11.8. continued

31:

*
*
*
*
*
*
*
*
*
*
*
*
*
*

Purpose: Saves the information that is on the screen
which is defined within a row/col area.

Function: save_screen_area(int start_row, int end_row,
int start_col, int end_col)

Enter with: start_row (0-24)
end_row (0-24)
start_col (0-79)
end_col (0-79)

Returns: Address to the memory location where screen info
has been saved

#include <dos.h>
#include “tyac.h”
#include <stdlib.h>
#include <stdio.h>

#define READ_CHAR_ATTR 0x08

char *save_screen_area(int start_row, int end_row,

{

int start_col, int end_col)

char *screen_buffer;
union REGS inregs, outregs;

int total_space; /* Holds space requirements */

int row = start_row; /* Used to loop through row/cols */
int col;

int ctr; /* offset ctr for info in buffer */
int trow, tcol, page, cur_st, cur_end; /* Hold curs info */

/* Page is critical */
get_cursor(&trow, &tcol, &page, &cur_st, &cur_end);

/* Determine amount of space for holding the area */
total_space =
(((end_row-start_row+1)*(end_col-start_col+1)) * 2);

total_space+=5; /* Hold row/col/page info at beginning */

screen_buffer = (char *)malloc(total_space);
if (Iscreen_buffer)
{
printf(“Unable to allocate memory!\n’);
exit(l);
T

55:

56: /* Save screen area position */

57: *(screen_buffer+0) = (char) start_row;

58: *(screen_buffer+1) = (char) end_row;

59: *(screen_buffer+2) = (char) start_col;

60: *(screen_buffer+3) = (char) end_col;

61: *(screen_buffer+4) = (char) page;

62:

63: /* Save the current info row by row */

64: ctr = 5;

65:

66: while (row <= end_row)

67: {

68: col = start_col; /* Reset col pos */
69: while (col <= end_col)

70: {

71: /* Position cursor */

72: cursor(row, col);

73: inregs.h.ah = READ_CHAR_ATTR;

74: inregs.h.bh = page;

75: int86(BI0S_VIDEO, &inregs, &outregs);
76:

77: /* Save character */

78: *(screen_buffer+ctr++) = (char)outregs.h.al;
79: /* Save attribute */

80: *(screen_buffer+ctr++) = (char)outregs.h.ah;
81:

82: col++; /* next col */

83: 3}

84: row++; /* Next row */

85: }

86:

87: /* Address where screen area saved */

88: return(screen_buffer);

89: }

describe what is going to happen in the save_screen_area(). The parameters

thatarereceived in line 28 are discussed in lines 12 to 15 of the comments. These
parameters are the starting row, start_row, the ending row, end_row, the starting
column, start_col, and the ending column, end_col. These define a rectangular area
on the screen that will be saved. This can be the entire screen or any portion of it.

Analw The first thing you should notice about this function is the comments, which

Just as important as the parameters is the return value, which returns a character
pointer. This pointer will be the address of the buffer used to save the screen
information. This returned pointer will be needed to restore the screen information.

343

Building a Routine Library

‘ Warning: If you choose not to restore a saved portion of the screen, you'll
@ need to use the free® function on the returned character pointer. This
o will free the memory that the save_screen_area() function allocated.

Before the function starts working to save the screen area, information on the cursor
isretrieved with the get_cursor () function to determine the video page. When saving
the screen area, you’ll need to know the current page.

The save_screen_area() function saves the area of screen into a buffer. The first five
bytes of this buffer are set aside to hold information on the area that is being saved.
Figure 11.1 is a representation of this buffer.

End Row End Column Screen Information
il

]‘] 77 T T T

Screen Buffer

Start Row Start Column Video Page

Figure 11.1. Representation of the saved screen buffer.

Line 44 determines the amount of space that will be needed to save the screen area.
This is done by determining the difference between the starting and ending rows and
columns and then multiplying them together. This is then multiplied by two because
two bytes will be needed for each position on the screen. One for the actual character
displayed, the other for the attributes or color of the character. Line 47 then adds five
to this calculated number for the overhead bytes presented in Figure 11.1.

Lines 49 to 54 work to allocate the amount of space that was calculated. If the space
is not allocated, an error message is printed and the program ends. This isn’t the
cleanest exit for a memory allocation error; however, it is acceptable.

Lines 57 to 61 fill in the first five bytes of the screen buffer with the rows, columns,
and page of the screen area being saved. While this is done by dereferencing offsets,
it could also have been done by using the following:

screen_buffer[0] = (char) start_row;

Tip: Because the screen_buffer is a pointer, it is more consistent to
\ use dereferencing.

.
344

In line 64, the ctr variable, the offset into the screen_buffer, is set to five. It is from
this point that you are ready to begin saving screen information. Line 66 beginsawhile
loop that cycles through each column. Line 69 begins a second whii1e loop that cycles
through each row. The result is that each row is read within each column until the
entire block is read.

Foreach position read in thewni e loops, several things occur. Inline 72, the cursor()
function is used to set the cursor to the current row and column position within the
block. Line 73 sets the anh register to the appropriate BIOS function number for
reading a character and its attribute. The bh register also needs to be set to the page
number that was determined by using the get_cursor() function earlier. Once the
registers are set, line 75 calls the Bros_vipeo function. This function returns the
character in the a1 register and the attributes in the an register. These values are placed
inthescreen_buffer. At the time the values are placed in the buffer, the offset pointer,
ctr, is incremented to the next position.

This process cycles through the entire area to be saved. Once the entire screen area
is saved, line 88 returns the pointer to the screen_buffer to the calling program.
The calling program will use this pointer to restore the screen with the
restore_screen_area() function. This function is presented in Listing 11.9.

Type!

Listing 11.9. RESSCRN.C. Restoring the saved portion
of the screen.

©CoO~NOUThA WNLPEP

N
*

% X X % % ok ok kX X X %

#i
#i
#i

VO

Program: RESSCRN.C

Authors: Bradley L. Jones
Gregory L. Guntle

Purpose: Restores information from the screen_buffer area
that was saved using the save_screen_area
function.

Function: restore_screen_area()

Enter with: Address of area containing data from last

save_screen_area call.

nclude <dos.h>

nclude <stdlib.h>

nclude “tyac.h”

id restore_screen_area(char *screen_buffer)

continues

345

346

Building a Routine Library

Listing 11.9. continued

21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:

{
union REGS inregs, outregs;
int start_row, start _col, end_row, end_col, video_page;
int ctr=5;
int row;
int col;
start_row = (int)*(screen_buffer+0);
end_row = (int)*(screen_buffer+l);
start_col = (int)*(screen_buffer+2);
end_col = (int)*(screen_buffer+3);
video_page = (int)*(screen_buffer+4);
row = start_row;
while (row <= end_row)
{
col = start_col; /* Start col at beginning */
while (col <= end_col)
{
/* Position cursor */
cursor(row, col);
inregs.h.ah = WRITE_CHAR;
inregs.h.bh = video_page;
/* Get character */
inregs.h.al = *(screen_buffer+ctr++);
/* Get attribute */
inregs.h.bl = *(screen_buffer+ctr++);
inregs.x.cx = 1;
int86(BIOS_VIDEO, &inregs, &outregs);
col++; /* next col */
}
row++; /* Next row */
b
free(screen_buffer); /* Free memory */
3

b

After seeing the save_screen_area() function, you should be able to follow this
listing. Thislistingworksalmost backwards from the way the save_screen_area()
function worked. In lines 28 to 33, the values that had been saved off for the

rows, columns, and page are taken out of the screen buffer and placed in variables.

Note: Because the values for the buffer location were included in the
saved buffer, there was no need to tell the restore_screen_area()
anything more than where the screen_buffer array was.

Lines 35 to 57 include the two whi e statements that are used to loop through the
screen buffer. Like the save_screen_area() function, the cursor is placed in the
appropriate location, the BIOS registers are set up, a BIOS function is called, values
are incremented, and the offset into the buffer is incremented. While the process is
nearly identical, characters are being written instead of read. In line 43, you see that
the wri1TE_cHAR value is placed in the an register. In lines 47 and 49, the character and
attributes are taken from the screen_buffer array and placed in thean and bi registers
before calling the B10os_vipeo interrupt.

The last code line of this function is very important. Line 59 frees the screen_buffer.
Once freed, this buffer can no longer be used. If you don’t free the buffer, the memory
will still be allocated.

Saving and Restoring in Practice

You can now save and restore areas of the screen. Listing 11.10 isa program that shows
save_screen_area() and restore_screen_area() in action.

Listing 11.10. LIST1110.C. Demonstration of saving
and restoring the screen.

=
]
D

1: /* Program: LIST1110.C

2: * Author: Bradley L. Jones

3: * Gregory L. Guntle

4: * Purpose: Use the screen saving/restoring functions.
5: * */
6:

7: #include <stdio.h>

8: #include <conio.h> /* for getch() prototype */

9: #include “tyac.h”

10:

11: int main(void)

12: {

13: int crow, ccol, cpage, c_st, c_end; /* for cursor */
14: char *screen_buffer;

15:

continues

347

Building a Routine Library

Listing 11.10. continued

16: screen_buffer = save_screen_area(0,24,0,79);
17: get_cursor(&crow, &ccol, &cpage, &c_st, &c_end);
18:

19: clear_screen(LIGHTBLUE, RED);

20:

21: write_string(“The screen is cleared....”,
22: LIGHTBLUE, RED, 10, 28);

23: write_string(“Press any key to continue”,
24: LIGHTBLUE, RED, 12, 28);

25:

26: getch(Q);

27:

28: restore_screen_area(screen_buffer);

29: cursor(crow, ccol);

30:

31: return O;

32: }

This listing should be enlightening if you have ever run a program that causes

the screen to look like it was before you started. This program saves the screen

when it starts and then restores it when it is complete. The save_screen_areaQ)
function and the get_cursor() function are called when the program starts. The
save_screen_area() IS Used to save the entire screen by passing the standard height
and widths. The get_cursor() function saves the cursor information.

Once the information is saved, no matter what the program does, you can return the
screen to its original look at the end of the listing. In this program, the screen is cleared
and a message is displayed. Even though all the information on the screen has been
wiped out, you have retained a copy in screen_buffer. Line 28 restores the screen with
restore_screen_area(). The cursor is then placed back to its location before the
program ends.

348

y

Do | DON"T|

DON'T forget to turn the cursor back on before exiting your program if you
turned it off.

DO hide the cursor if there aren’t any entry fields on your screen (such as
when you ask the user to press any key to continue).

DO call restore_screen_area() OI free() if you call save_screen_area()
so that you release the memory allocated to save the screen.

Summary

This chapter contained several functions that you will find useful. The first functions
presented are used to hide and show the cursor. These functions are valuable when you
are displaying screens that don’t have any enterable fields. While some compilers have
functions to clear the screen, not all do. A function was presented that enables you to
clear the screen. This clear_screen() function includes the capability to state what
colors you want the screen cleared to. A grid function was also presented, which
enables you to place grid boxes in your applications. The final functions presented are
used to save and restore areas of the screen. These functions help you create
overlapping items on your screens without loosing the underlying information.

Q&A

Q What are some uses for the grid(function?

A There are two main uses that you will see in the remainder of this book. One
use is to give an application a textured background screen. The second is to
give texture to shadows on boxes.

Q What will happen if I use the save_screen_area() function, but never
call the restore_screen_area() function?

A The save_screen_area() function allocates memory dynamically. This
memory must be freed at some point. The restore_screen_area() function
does the freeing when it redraws the screen area. You may need the memory
elsewhere; however, it will remain unavailable until it is freed. If you decide
you don’t want to restore the screen area, you can use the free() function to
free the screen buffer area that was allocated.

349

350

Building a Routine Library

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned.

Qui

2.

y4

. Why would you want to hide the cursor?

What happens if you call the cursor_off() function and then exit your
program? Will the cursor automatically come back on?

3. Why do you need a clear_screen() function?

>

© o N o O

10.

What is the difference between Borland’s cirscr() function and your
clear_screen() function?

How many different ASCII grid patterns are there?

What are the numerical values of the ASCII grid characters?
What is the benefit of saving the screen?

What happens if you don’t restore a saved screen?

Why are the row and column positions stored in the screen_buffer along
with the screen data in the save_screen_area() function?

Why are two bytes allocated for each position on the screen instead of just
one?

Exercises

1.

Add the new functions that you created today to your TYAC.LIB library. In
addition, add the prototypes for these functions to the TYAC.H header. The
new functions from today are as follows:

cursor_off()
cursor_on()
clear_screen()

gridQ
save_screen_area()
restore_screen_area()

2. In the analysis of Listing 11.3, you were asked to comment out various lines
of the listing. Try commenting out the lines presented in each of the follow-
ing scenarios to see what happens.

a. Comment out the cursor_onQ) line.
b. Comment out the cursor_offQ line.

¢. Comment out both the cursor_on() and cursor_offQlines.

3. Use the save and restore screen area functions in a program.

4. What happens if you keep calling the save screen function and then never
restore the screen? Write a program that calls the save_screen_area()
function over and over without restoring or freeing the allocated area.

5. ON YOUR OWN: Write a function that takes a character string as a
parameter. Display this message in a box in the center of the screen. The box
should have a grid shadow. In addition, the user should be asked to press a
key. Once the key is pressed, the box should be removed and the screen 11
should appear as it was before the message and box were displayed.

351

