Storage Space:
Working with
Memory

WEEK

Storage Space: Working with Memory

How you use memory can make or break a program. As you write bigger and more
dynamic programs, you need a better understanding of how your C programs use
memory. Today will you learn:

0 Why first understanding memory is important.

O What kind of storage different C variable types require.
O What dynamic memory allocation is.

0 How to dynamically allocate memory with malloc().

0 What other memory functions will be of use.

Itis important that you understand the complexities involved with memory. Starting
with Day 2, “Complex Data Types,” you will be writing programs that may require
dynamically allocating memory.

Why Start the 21 Days with
Memory Usage?

Itisassumed thatyou have a basic understanding of the C language. In most beginning
C books and beginning C classes, the overall objective is to teach C. The approach
most often taken is to present the C keywords and explain what they can do. In
addition, many of the common functions, such as printf(Q), that come with C
compilers are presented along with what they can do. In presenting these basic
concepts, relatively small programsare used, making memory conservation irrelevant.

As you begin to write bigger programs, you will find memory management to be of
vital importance. You will find that to avoid running out of memory, your programs
will be required to manage the memory needed. This book will quickly get into topics
where it will be best to only use the memory you need. Inaddition, you may not always
know how much memory you need until you run the program. This is definitely the
case when you work with variable length structures on Day 2. You will find that
understanding memory usage is almost mandatory when working with some complex
data types and advanced C topics.

Variable Storage Requirements

Everything in C uses memory in one way or another. Listing 1.1 is an expanded
version of a program that can be found in virtually all beginning C books. This

program displays the amount of storage space (memaory) needed for different variable

types and other C constructs.

Tyee!

Listing 1.1. C variable sizes.

1: /* Filename: LISTO101.c

2: * Author Bradley L. Jones

3: * Purpose : This program prints the size of various C

4: * variable types and constructs.

5: * */
6:

7: #include <stdio.h>

8:

9: void main(void)

10: {

11: char *char_ptr;

12: int *int_ptr;

13: long *long_ptr;

14: short *short_ptr;

15: float *float_ptr;

16: double *double_ptr;

17: char far *far_char_ptr;

18:

19: struct test_tag {

20: char a;

21: int b;

22: }test_struct;

23:

24: printf(‘“\n Type Size “);

25: printf(“\n ”);

26: printf(“\n character %d “, sizeof(char));

27: printf(“\n integer %d “, sizeof(int));

28: printf(“\n short %d ““, sizeof(short));

29: printf(“\n long %d “, sizeof(long));

30: printf(“\n float %d “, sizeof(float));

31: printf(“\n double %d ““, sizeof(double));

32: printf(“\n char pointer %d “, sizeof(char_ptr));
33: printf(“\n int pointer %d “, sizeof(int_ptr));
34: printf(“\n short pointer %d ““, sizeof(short_ptr));
35: printf(“\n long pointer %d “, sizeof(long_ptr));
36: printf(‘“\n float pointer %d “, sizeof(float_ptr));
37: printf(“\n double pointer %d ““, sizeof(double_ptr));
38: printf(“\n far char pointer %d “, sizeof(far_char_ptr));
39: printf(“\n test_structure %d “, sizeof(test_struct));
40: printf(“\n ”);

41: 3}

Storage Space: Working with Memory

Output Type Size

character
integer

short

long

float

double

char pointer
int pointer
short pointer
long pointer
float pointer
double pointer
far char pointer
test_structure

A ANNMNNMNNNNOABDMNNPRE

As you can see from the output, different variable types are different sizes. This
Ana|y3|3 program simply uses the sizeof operator in conjunction with printf() to
display the sizes of different variable types. Lines 26 through 31 print the

standard C variable types. To make the program clearer, lines 11 to 17 declare pointer
variables to be used in the printfQ calls in lines 32 to 38. In line 39, a test_struct
structure is printed. This structure was declared in lines 19 to 22. Depending on your
compiler’s settings, this may be off by 1 byte in size due to byte alignment. When the
output was compiled, byte alignment was on. Byte alignment is covered on Day 2.

Review Tip: Remember, sizeof isa C keyword used to determine the
\ size of any item in C.
.

Depending on whatsize machine you are using, your output—the sizes printed—may
be different. For example, a mainframe C compiler may interpret an integer as being
4 bytes long instead of two. For virtually all IBM PC-compatible compilers, the sizes
should match those given in the preceding output, with a possible exception being the
structure—if byte alignment is off, it may be three instead of four.

Allocating at Compile Time

In Listing 1.1, the storage space required for all the variables was determined at the
time the program was compiled. For a program to compile and later run, enough
memory will have to be available for the program and all its variable allocations. In a

small program such as Listing 1.1, this is not a concern because there should always
be more than enough available memory for the few variables being allocated.

Consider the case of having the following declaration in your program:
char buffer[1000];

When the program is compiled, a requirement of 1000 bytes of memory will be added
to the memory requirements of the rest of the program. If the total of the program’s
memory requirements is not available, the program will not run. When the program
runs, 1000 bytes of memory will be set aside to be used as the buffer character array.
If buffer is never used to store information that is 1000 bytes long, memory space is
wasted.

Consider a second example such as the following array:
char user_name[??7];

If user_name isgoing to store my first name, “Bradley,” it needs to be 8 characterslong.
Of course, | am assuming that only my first name is going to be stored, but what if
my last name is supposed to be included also? If user_name is 8 characters long, there
isn'troom for my full name. In addition, if user_name is going to be used to store other
names, it will need to be big enough to hold the largest.

Review Tip: Don’t forget that “Bradley” takes 8 bytes to store—the
\ eighth byte is for the Null terminator.
LN

A name is a simplistic example because the number of bytes are minimal; however, it
easily illustrates the point. Most programmers will set a certain size for a name field
and allow the space to be wasted. What if you have an array of names? Listing 1.2
demonstrates how memory can be wasted.

ﬂpe Listing 1.2. A program showing wasted memory.

/* Filename: LIST0102.c

* Author : Bradley L. Jones

* Purpose : This provides an example of allocating memory
* for an array.

*

*/

#include <stdio.h>

O~NO U WNPRE

continues

=

Storage Space: Working with Memory

Listing 1.2. continued

9: #define MAX 100

10:

11: wvoid main(void)

12: {

13: char student_name[MAX][35];

14:

15: long Xx;

16:

17: printf(“\nEnter student names, a blank line will end\n™);
18:

19: for(x = 0; X < MAX; Xx++)

20: {

21: printf(“Enter student %5.5d: “, x+1);
22: gets(student_name[x]);

23:

24: if(student_name[x][0] == “\0*)

25: X = MAX;

26: }

27:

28: printf(“\n\nYou entered the following:\n”);
29:

30: for (x = 0; student_name[x][0] '= “\0” && x < MAX; Xx++)
31: {

32: printf(‘*\nStudent %5.5d:”, x+1);

33: printf(“ %s”, student_name[x]);

34: }

35:

36: }

Enter student 00001: Connie Crank
Enter student 00002: Deanna Alexander
Enter student 00003: Dawn Johnson
Enter student 00004: Bruce Crouch
Enter student 00005: Sherman Denman
Enter student 00006:

()quu Enter student names, a blank line will end

You entered the following:

Student 00001: Connie Crank
Student 00002: Deanna Alexander
Student 00003: Dawn Johnson
Student 00004: Bruce Crouch
Student 00005: Sherman Denman

is defined as 100 in line 9. If you are entering only the number of students in a

single class, you may only need 20 to 30, but what if you are entering the names
of all the students in the United States? In this case, you are going to need more than
100 students. To increase the value of max from 100, you have to modify the code and
recompile. This means the program, at present, is only useful to people wanting to
enter 100 or fewer names.

An alw This program allows you to enter up to max number of students. In this case, max

=

There is another problem that can be illustrated with this listing. Change line 9 to
define max as 100,000. This is not large enough to enter all the students in the United
States, but itshould handleall the studentsin alarge city. Recompile the program. You
may find that you can’t recompile! You will probably get an error similar to the
following:

Error LIST0102.C ##: Array size too large

The compiler knows that you are trying to use too much memory. Because of the way
the computer addresses memory, you are limited to 64K of memory for data. Later
today, you will see how to get around this limitation.

Dynamic Memory Allocation

One way to avoid trying to second guess the number of variables or the amount of
mem-ory you require is to dynamically allocate memory. Dynamic allocation of
memory means that memory is requested when it is needed. Instead of deter-
mining memory requirements at the time the program is compiled, memory is
requested as the program is running. This means that if your program doesn’t need
the memory, the memory is left available. In addition, the program will only need to
request the memory it requires. If you are collecting the names of only 352 students,
you only reserve memory for the 352 students.

There are several general functions that are used when allocating memory dynami-
cally. To be effective in your use of dynamically allocated memory, you should
understand the purpose of each of these. These include:

O mallocQ
U freeQ
O realloc()

O calloc(Q

10

Storage Space: Working with Memory

The malloc() Function

Among the more popular functions to allocate memory is mattoc(). The maltoc()
function enables you to set aside a specified number of bytes of memory. The function
prototype for mallocQ is

void *malloc(size_t size);

This prototype is foundin the STDLIB.H header file of most compilers. This memory
allocation function sets aside size bytes of memory and returns a pointer to the
starting byte of the newly allocated memory. This pointer can then be used as a
reference to the allocated memory. If there is not enough memaory available, then nuLL
is returned. Listing 1.3 presents an example of malloc()’s Use.

ﬂpe Listing 1.3. Using the malloc() function.

1: /* Filename: LIST0103.c

2: * Author : Bradley L. Jones

3: * Purpose : This provides an example of allocating memory
4: * for an array dynamically.

5: * */
6:

7: #include <stdio.h>

8: #include <stdlib.h>

9:

10: void main(void)

11: {

12: long nbr_students = 0;

13: long ctr;

14:

15: char *student_name;

16: char trash[80]; /* to clear keyboard buffer */

17:

18: while(nbr_students < 1 || nbr_students > 2000000000)
19: {

20: printf(“\nHow many students will be entered? ==> “);
21: scanf(“%ld”, &nbr_students);

22: gets(trash); /* clear out keyboard buffer */
23:

24:

25: student_name = (char *) malloc(35*nbr_students);

26:

27: if(student_name == NULL) /* verify malloc() was successful
*/

28: {

29: printf(“\nError in line %3.3d: Could not allocate memory.”,
30: __LINE_);

31: exit(l);

32: }

33:

34: for(ctr = 0; ctr < nbr_students; ctr++)
35: {

36: printf(*\nEnter student %5.5d: “, ctr+l);
37: gets(student_name+(ctr*35));

38: }

39:

40: printf(*“\n\nYou entered the following:\n”);
41:

42: for (ctr = 0; ctr < nbr_students; ctr++)
43: {

44: printf(“\nStudent %5.5d:”, ctr+l);

45: printf(*“ %s”, student_name+(ctr*35));

46: }

47:

48: /* this program does not release allocated memory! */
49: }

()u u How many students will be entered? ==> 5
qj Enter student 00001: Connie Crank
Enter student 00002: Deanna Alexander
Enter student 00003: Dawn Johnson
Enter student 00004: Bruce Crouch

Enter student 00005: Sherman Denman

You entered the following:

Student 00001: Connie Crank
Student 00002: Deanna Alexander
Student 00003: Dawn Johnson
Student 00004: Bruce Crouch
Student 00005: Sherman Denman

m This program differs from Listing 1.2 in that it leaves it to the person running
yS' the program to determine how many names are going to be entered. You don’t
have to guess how many student names there will be. Lines 20 and 21 prompt
the user for the number of names that are going to be entered. Line 25 attempts to use
malloc() to dynamically allocate the memory. Notice that the program allocates the
specific amount requested. If there is not enough memory available, an error message
is displayed in line 29; otherwise, the user is allowed to enter the names in lines 34
to 38.

11

12

Storage Space: Working with Memory

Some other items in this program deserve mentioning. Line 16 declares a character
array, or string, called trash. This string also could have been dynamically allocated
using the maltoc() function. The trash string is used in line 22 to remove any
remaining keystrokes that may still be in the keyboard buffer.

Another point worth mentioning is the defined constant in line 30. The __LINE__
constant is replaced by the compiler with the current line number. You may be
wondering why __rLine__ was used in line 30 instead of the number 30. The answer
issimple: If the program is changed and recompiled, the line number for the parameter
to the printf() may change. By using __LINE_ _, the programmer does not need to

worry about making a change. If 30 had been used, the line number would need to
be manually changed any time the program changed.

Review Tip: The __LiNe__ preprocessor directive is a defined con-
stant. When the program is compiled, it is replaced with the current

LY line number. Another popular preprocessor directive is __FILE__.

This constant is replaced by the current source file’s name.

The free() Function

Allocating memory allows memory to be set aside for when it is needed; however, to
complete the cycle, the memory should be deallocated, or freed, when it is no longer
needed. When a program ends, the operating system is generally able to clean up
memory; however, many programs will want to deallocate the memory so that other
parts of the program can use it. Listing 1.4 shows what can happen when memory
allocations are not cleaned up.

Warning: The following listing may cause your machine to lock up.

Type Listing 1.4. Allocating memory without freeing it.

1: /* Filename: LIST0104.c

2 * Author : Bradley L. Jones

3 * Purpose : This program shows what happens when dynamically
4: * allocated memory is not released.

5

*/

© 00~NO ¥

10:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:

#include <stdio.h>
#include <stdlib.h>

int do_a book page(long);

void main(void)

{

}

int rv;
unsigned long nbr_pages = 0;
unsigned long page = O;

printf(*“\n\nEnter number of pages to do ==> *);
scanf(“%d”, &nbr_pages);

for(page = 1; page <= nbr_pages; page++)
rv = do_a_book_page(page);

if (rv == 99)
{
printf(*“\nAllocation error, exiting...”);
exit(l);
¥
}

printf(“\n\nDid all the pages!\n”);

int do_a_book_page(long page_nbr)

{

char *book_page; /* pointer to assign allocation to */
book_page = (char *) malloc(1000);

iT(book_page == NULL)
{
printf(“\nError in line %3.3d: Could not allocate memory.”,
__LINE_);
return(99);
3
else
{
printf(“\nAllocation for book page %d is ready to use...”,
page_nbr);

continues

13

Storage Space: Working with Memory

Listing 1.4. continued

54: * code to get information and assign it at the location *

55: * that was previously obtained with malloc(). *

56: * Code might then write the page to disk or something. *

57: /

58:

59: /*** WARNING: This function does not release allocated memory! ***/
60:

61: return(0);

62: }

Enter number of pages to do ==> 4
Ouipuﬂ

Allocation for book page 1 ready to use...
Allocation for book page 2 ready to use...
Allocation for book page 3 is ready to use...
Allocation for book page 4 ready to use...

Did all the pages!
Second run:

Enter number of pages to do ==> 1000

Allocation for book page 1 is ready to use...
Allocation for book page 2 is ready to use...
Allocation for book page 3 is ready to use...
Allocation for book page 4 is ready to use...
Allocation for book page 5 is ready to use...
Allocation for book page 6 is ready to use...
Allocation for book page 7 is ready to use...
Allocation for book page 8 is ready to use...

Allocation for book page 46
Allocation for book page 47
Allocation for book page 48
Allocation for book page 49 ready to use...
Allocation for book page 50 is ready to use...
Error in line 044: Could not allocate memory.
Allocation error, exiting...

S ready to use...
S ready to use...
s ready to use...
s
s

Anal 1 Notice that after a certain number of allocations, the program stops. In addition,
W you may find your entire machine locks up. Now replace the comment in line
59 with the following:

free(book_page);

14

5 -
PUBLISHING

When you rerun the program, you should no longer run out of memory to allocate
for the book page. When you enter a number such as 1000, the output displays all the
way to page 1000.

=

Notice that there was not a memory allocation error. The free () function releases the
memory so that it can be reused.

Note: It is good programming practice to always deallocate any memory
that is dynamically allocated. Memory allocation errors can be very hard
to find in large programs.

Do | DON"T]

DO check the return value from maltoc() to ensure that memory was
allocated.

DO avoid using mat1oc() for allocating small amounts of memory. Each
memory allocation made with mal1oc() contains some overhead—typically
16 bytes or more.

DON'T forget to free allocated memory with the free) function. If you
don’t free the memory, and the pointer to it goes out of scope, the memory
will be unavailable during the execution of the rest of the program.

The realloc() Function

In addition to being able to allocate blocks of memory, you may also want to change
the size of the memory block. The function real 1oc() was developed for this specific
reason. real loc() increases or decreases the size of an allocated block of memory. The
prototype for realloc() as described in the STDLIB.H header file will be similar to
the following:

void *realloc(void *originalblock, size_t size);

The size parameter for the realloc() function is just like the one in the malloc()
function—it is the number of bytes that is being requested. The originalblock
parameter is the pointer to the block of memory that had previously been allocated.

15

16

Storage Space: Working with Memory

Once the reallocation of memory is completed, the originalblock pointer may or
may not exist. If the allocation fails, which would occur in the case of a request for a
larger block of memory that is unavailable, the pointer will be retained. In this failed
case, the real 1oc() function will return a nuLL pointer. If the allocation is completed
successfully, the originalblock pointer could be gone. The reason for this is that the
reallocation may not be in the same location. If necessary, real1oc() will move the
allocated memory to another location. Listing 1.5 presents an example of real 1oc().

ﬂpe Listing 1.5. The use of realloc().

1: /* Filename: LISTO0105.c
2: * Author : Bradley L. Jones
3: * Purpose : This provides an example of using realloc() to
4: * get additional dynamic memory as needed
:
6:
7: #include <stdio.h>
8: #include <stdlib.h>
9:
10: #define NAME_SIZE 35
11:
12: void main(void)
13: {
14: long student_ctr = O;
15: long ctr;
16: char *student_name = NULL;
17: while((student_name =
18: realloc(student_name,
(NAME_SIZE * (student_ctr+1)))) != NULL)
19: {
20: printf(“\nEnter student %5.5d: ““, student_ctr+1);
21: gets(student_name+(student_ctr * NAME_SIZE));
22: if(student_name[student_ctr * NAME_SIZE] == NULL)
23: {
24:
25: break;
26: }
27: else
28: {
29: student_ctr++;
30: 3}
31: }
32
33: printf(““\n\nYou entered the following:\n”);
34:
35: for (ctr = 0; ctr < student_ctr; ctr++)
36: {
37: printf(‘*\nStudent %5.5d:”, ctr+l);

38:
39:
40:
41:
42:

printf(* %s”, student_name+(ctr*NAME_SIZE));
}

free(student_name);

}

Pl

Enter student 00001: Mario Andretti
Enter student 00002: A. J. Foyt
Enter student 00003: Rick Mears
Enter student 00004: Michael Andretti
Enter student 00005: Al Unser, Jr.

Enter student 00006:

You entered the following:

Student 00001: Mario Andretti
Student 00002: A. J. Foyt
Student 00003: Rick Mears
Student 00004: Michael Andretti
Student 00005: Al Unser, Jr.

This program follows the flow of some of the previous listings, except that it
reallocates the storage space for the names. Each time there is a new name, a call
to realloc() (line 18) attempts to increase the size of the student_name. Users

will be able to enter names until there is not enough memory left to allocate, or until
they choose not to enter a name. Notice that realloc() is used to allocate the first
instance of student_name. The first time that line 18 is reached, student_name IS NULL.
Passing a NuLL string as the first parameter of realloc() is equivalent to calling
malloc(Q).

The calloc() Function

The caltoc(function is quite similar to mattoc(). There are two differences. The
first difference is in the initialization of the allocated memory. When matlocQ)
allocates memory, it does not initialize, or clear, the newly allocated memory;
whatever was previously stored at the allocated memory location will still be there.
With acall to caltocQ, the allocated memory is cleared by initializing the block with
Zeros.

17

18

Storage Space: Working with Memory

ﬂ

The second difference is that caltoc() allows for an additional parameter. The
prototype for calloc(), which is in the STDLIB.H header file, should be similar to
the following:

void *calloc(size_t number_items, size_t block_size);

The block_size parameter is the same as the size value passed to the mallocQ)
function. It is the number of bytes that you want allocated in your memory block. The
number_items parameter is the number of blocks you want allocated. For example, if
you did the following call, the caltoc() would try to allocate 10 blocks of 100 bytes
of memory, or 1000 bytes in total:

pointer = calloc(10, 100)

This would have the same result asamalloc(1000) in regard to the amount of space
allocated. The following two calls would attempt to allocate the same amount of
memory. The difference would be that cat1oc() would also initialize the memory to
Zeros.

pointer
pointer

malloc(1000);
calloc(1, 1000);

You might be asking why you need the extra parameter. Up to this point, you have
been dealing with character data only. With character data, typically, each character
requires 1 byte, soitiseasy tosee from the mar1oc() call how many charactersare going
to be stored. If you were going to store integers, calling mal1oc() with 1000 does not
make it clear that only 500 integers are going to be allocated. In addition, this is
making an assumption that an integer will be 2 bytes. Listing 1.6 isan example of how
callocQ) I used:

pe Listing 1.6. Using calloc().
1: /* Filename: LIST0106.c
2: * Author : Bradley L. Jones
3: * Purpose : This provides an example of allocating memory for an
4: * array dynamically with the calloc function.
5: * Descript: Program allows grades to be entered before printing
6: * an average.
7: *
8:
9: #include <stdio.h>
10: #include <stdlib.h>
11:
12: void main(void)
13: {
14: int nbr_grades = 0;

*/

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
A47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:

int total = O;

int ctr;

int *student_grades;

char trash[80]; /* to clear keyboard buffer */

while(nbr_grades < 1 || nbr_grades >= 10000)
{

printf(*\nHow many grades will be entered? ==> *);
scanf(“%ld”, &nbr_grades);
gets(trash); /* clear out keyboard buffer */

3
student_grades = (int *) calloc(nbr_grades, sizeof(int));

if(student_grades == NULL)
{

printf(“\nError in line %3.3d: Could not allocate memory.”,
__LINE_);
exit(l);
}

for(ctr = 0; ctr < nbr_grades; ctr++)

{
printf(“\nEnter grade %4.4d: ““, ctr+l);

scanf(“%d”, student_grades+ctr);

}

printf(*\n\nYou entered the following:\n");

for (ctr = 0; ctr < nbr_grades; ctr++)

{
printf(*“\nGrade %4.4d:”, ctr+l);
printf(“ %d”, *(student_grades+ctr));
total += *(student_grades+ctr);

b

printf(*\n\nThe average grade is: %d\n\n”, (total/nbr_grades));
/* Free allocated memory */

free(student_grades);

How many grades will be entered? ==> 5
Enter grade 0001: 100

Enter grade 0002: 80

19

20

Storage Space: Working with Memory

Enter grade 0003: 85
Enter grade 0004: 90

Enter grade 0005: 95

You entered the following:

Grade 0001: 100
Grade 0002: 80
Grade 0003: 85
Grade 0004: 90
Grade 0005: 95
The average grade is: 90

AnalyS|S This program allows a number of grades to be entered and printed, along with

an average grade. This program uses calloc() in line 27 in a way that makes the

program portable from one computer type to another. The objective of line 27
is to allocate 5 integers. Regardless of what computer this program is compiled on,
there will be enough room for the 5 integers. This is accomplished by using the sizeof
operator to determine the size of an integer. Granted, mal1oc() could be used to do
the same thing, but the caltoc() is clearer. The following is a function call that uses
malloc() to accomplish the same task:

ptr = malloc(sizeof(int) * 5);

Listing 1.6 follows the same flow as the other programs presented so far. Lines 20
through 25 prompt the user for how many grades will be entered. Line 23 uses the
scanf() function to accept a number. Line 24 clears any remaining information that
may be in the keyboard buffer, including the carriage return the user typed when
entering the gradesin line 23. The whi 1e statement keeps reprompting the user for the
number of grades as long as the number that is entered is less than 1 or greater than
10,000. Line 27 then allocates the space for the grades to be stored.

As should be done with any call to a dynamic memory allocation function, line 29
ensures the space was indeed allocated. If not, an error message is displayed and, in line
33, the program exits. Lines 36 to 40 use a for loop to prompt the user to enter the
previously specified number of grades. Because the counter is started at 0, when
prompting the user (in line 38), 1 is added. A user will be more familiar with the first
grade being 1 instead of 0. Line 39 actually gets the grade using scanf(). Notice that
the grade is placed at a position within the memory previously allocated. The offset
into this memory is based on the ctr value.

5 -
PUBLISHING

Once all the grades are entered, the program uses an additional for loop (lines 44 to
50) to print the grades. As the for loop prints each grade, line 49 adds the grade to
thetotal. Notice thatin lines47 and 49 the array is being dereferenced with the asterisk
(*) to actually obtain the values. (If this dereferencing is confusing, a quick review of
pointers, which will be covered on Day 2, should help.) Line 56 is one of the most
important lines in the program. Notice that this is where the student_grade array is
deallocated. At this point, all the memaory that was allocated dynamically is released
back.

=

Expert Tip: It does not matter whether you use malloc() Of calloc()
\ to allocate memory dynamically. If you are allocating a single area,
A3 then mallocQ) is easiest to use. If you are allocating several items of

the same size, then calloc() is a better choice.

Do DON"T|

DO use the sizeof operator when allocating memory to help make your
programs portable, that is, malloc(sizeof(int) * value).

DON'T assume that a dynamic allocation function always works. You
should always check the return value to ensure the memory was obtained.

DON'’T assume that a call to real1oc() Will allocate memory in the same
location. If there is not enough memory at the original location, realloc()
may move the original block to a different location.

Allocating More than 64K

All the functions described so far have a maximum allocation capability. They cannot
allocate more than 64K of memory. You saw thisin Listing 1.4, which lacked a free O
statement. The program always stopped before it allocated more than 64 times
(64,000 bytes, 1,000 bytes at a time). The way around this limitation is to use
functions that allow additional memory to be allocated. This additional memory is
termed far memory.

21

$)
L)
=)

Borland

Microsoft

22

Storage Space: Working with Memory

Unlike the general memory allocation functions, the far memory allocation functions
are not ANSI standard. This means that each compiler may have different functions
that perform these allocations. For the Borland compilers, these functions are:

0 farmalloc()

Prototype:

void far *farmalloc(unsigned long size);

farcalloc(Q)

Prototype:

void far *farcalloc(unsigned long nbr_units, unsigned long size);
farrealloc(Q

Prototype:

void far *farrealloc(void far *old_block _ptr, unsigned long size);
farfree()

Prototype:

void far *farfree(void far*block_ptr);

For the Microsoft compiler, the available far functions are:

O

O

_fmalloc(Q)

Prototype:

void __far *fmalloc(size_t size);

_Ffcalloc(Q)

Prototype:

void __far *_fcalloc(size_t nbr_units, size_t size);
_frealloc(Q

Prototype:

void __far *_frealloc(void __far *old_block ptr, size_t size);
_Ffree()

Prototype:

void __far *_ffree(void __far*block_ptr);

These functions work nearly identically to the general memory allocation functions;

however, there are a few exceptions. First, you must include a different header file. If

you are using a Microsoft compiler, you must include the malloc.h header. If you are 1
using a Borland compiler, you include the alloc.h header file. For other compilers, you

should consult the library reference section of the manuals. In addition, a difference

in the Borland functions is that instead of taking an unsigned integer parameter

(size_t), they take an unsigned long parameter.

Listing 1.7 isa rewrite of Listing 1.4 using the farmal1oc() function. Notice that the
other listings in this chapter could be similarly modified to use the far functions. For
specific usage of your compiler’s far memory allocation functions, you should consult
your compiler’s library reference manual.

‘ Warning: The ability to use the far memory allocations is dependent upon
’ which memory model you are using to compile your programs. Tiny

® model programs cannot use the far functions. In compact, large, and huge

memory models, the far functions are similar to their counterparts, except

they take unsigned long parameters. In addition, memory allocated with

far functions require that the pointers used to access them be declared as

far.

ﬂpe Listing 1.7. Use of far memory allocation functions. Borland
1: /* Filename: LIST0107.c
2: * Author : Bradley L. Jones
3: * Purpose : This program shows what happens when memory allocated
4: * dynamically with farmalloc() is not released.
5: * */
6: #include <alloc.h>
7: #include <stdio.h>
8: #include <stdlib.h>
9:
10: int do_a book page(long);
11:
12: wvoid main(Q)
13: {
14: int rv;
15: unsigned long nbr_pages = 0;
16: unsigned long page = O;
17:
18: printf(*“\n\nEnter number of pages to do ==> *);

continues

23

24

Storage Space: Working with Memory

Listing 1.7. continued

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:

}

scanf(“%d”, &nbr_pages);

for(page = 1; page <= nbr_pages; page++)

{
rv = do_a_book_page(page);

if (rv == 99)
{
printf(“\nAllocation error, exiting...”);
exit(l);
}
3

printf(“\n\nDid all the pages!\n”);

int do_a_book_page(long page_nbr)

{

char far * book_page; /* pointer to assign allocation to */
book_page = (char *) farmalloc(1000);

if(book_page == NULL)
{
printf(“\nError in line %3.3d: Could not allocate memory.”,
__LINE_):
return(99);
}

else

{
printf(“\nAllocation for book page %ld is ready to use...”,
page_nbr);
}

/

* code to get information and assign it at the location *
* that was previously obtained with malloc(). *
* Code might then write the page to disk or something. *

/

/*** WARNING: This function does not release allocated memory! ***/

}

return(0);

For Microsoft compilers, replace the following lines:

6: #include <malloc.h>
39: book_page = (char *) _fmalloc(1000);

Enter number of pages to do ==> 4 :L

Allocation for book page 1 is ready to use...

()uq)u Allocation for book page 2 is ready to use...
3
4

Allocation for book page is ready to use...
Allocation for book page is ready to use...

Did all the pages!
Second run:

Enter number of pages to do ==> 10000

Allocation for book page
Allocation for book page
Allocation for book page
Allocation for book page
Allocation for book page
Allocation for book page
Allocation for book page
Allocation for book page

is ready to use...
is ready to use...
is ready to use...
is ready to use...
is ready to use...
is ready to use...
is ready to use...
is ready to use...

O~NO O WNPR

Allocation for book page 9995 is ready to use...
Allocation for book page 9996 is ready to use...
Allocation for book page 9997 is ready to use...
Allocation for book page 9998 is ready to use...
Allocation for book page 9999 is ready to use...
Allocation for book page 10000 is ready to use...

Did all the pages!

This program has just a few changes from Listing 1.4. In line 6, a new include

. file was added for the far allocation function. In line 37, the addition of the far

Ana|y5|§l keyword for the book_page variable enables it to be used to address far memory.

< The final change is in line 39, where the appropriate far memory allocation
function has replaced the mat1oc() function in Listing 1.4.

Aswith Listing 1.4, after a certain number of allocations, the program stops. As before,
you may find that your entire machine locks up. However, as you will see, this
program does not run out of memory as quickly as Listing 1.4. With the farmalloc()
or _fmalloc() statement, you have access to much more of the computer’s available
RAM.

Inusing the far version of the mal 1oc () statement, you had to also make one additional
change. In line 6, an additional header file needed to be included. Depending on your

25

26

Storage Space: Working with Memory

compiler, this may have been either alloc.h or malloc.h.
In Listing 1.4, you replaced the comment that was in line 59 with the following:
free(book_page);

Because you are using a far memory allocation function, you want to use the
appropriate far function in Listing 1.7. For Microsoft compilers, thisis _ffree(); for
Borland compilers, use the farfree() function instead.

Do | DON"T]

DON'T forget that the far memory allocation functions are not ANSI
standard functions. This means they may not be portable from one compiler
to another.

DO use the far free function to allocate memory that was allocated with a far
function.

Summary

Today you learned about the dynamic memory allocation functions. These functions
enable you to allocate specific amounts of memory at runtime rather than at compile
time. The capability to dynamically allocate memory can help to make more versatile
programs. Not only were the general, ANSI standard allocation functions presented,
butsowere several additional non-ANSI standard functions. The non-ANSI standard
functions are used to allocate larger chunks of memory than are allowed by the general
functions, such as mallocQ).

Q Why is a topic such as memory allocation covered on Day 17

A Asyou begin to write bigger programs and develop more advanced pro-
grams, you will find that memory management is of vital importance. As
early as Day 2, you will see several advanced concepts that require memory
to be allocated dynamically. These include variable length structures and
linked lists.

Q What are memory models?

A Memory models deal with the amount of space that is available for a pro-
gram and its data. When compiling a C program, you must specify to the
compiler which memory model is being used. Typically this value—either
tiny, small, compact, medium, large, or huge—is set to a default value.
Appendix A contains a detailed explanation of the differences among the
memory models.

=

Q Should I be worried if I did not understand everything in this chapter?

A No! Although programs as early as Day 2 will be using the dynamic memaory
functions, these programs will explain what they are doing at the time. As
you work on these new programs, the function presented becomes clearer.

Q What are common reasons for using dynamic memory allocation
functions?

A There are two major uses for dynamic memory allocation functions. The
first is to keep a program’s initial memory requirements (or allocation) as
small as possible. This allows the program to load and execute even if it is
under another program’s control. Secondly, a major reason for using dy-
namic memory allocation functions is to assure the memory can be released
when it is no longer needed.

Workshop

The Workshop consists of quiz questions to help you solidify your understanding of
the material covered and exercises to provide you with experience in using what you've
learned.

Quiz
1. Why is understanding memory important?
What is dynamically allocated memory?
What is the most memory you can dynamically allocate?
How do you release memory that has been dynamically allocated?

What is the difference between mal1oc() and caltoc()?

IS e

What is the difference between mattoc() and farmalloc()?

27

Storage Space: Working with Memory

EXxercises

1. Write a code fragment that dynamically allocates memory to hold 10
integers using the maltoc() command.

2. Rewrite your answer in Exercise 1 using the caltoc() function.

3. Write a function to allocate enough memory to hold 20,000 10ng values.
This function should return a pointer to the array, or nuLL if the memory
could not be allocated.

4. BUG BUSTER: Is there anything wrong with the following code fragment?

#include <stdlib.h>
#include <stdio.h>
#define MAX 100
void main(void)

{
string = malloc(MAX);
printf(“Enter something: “);
gets(string);
puts(string); /* do something like printing */
free(string);
¥

5. BUG BUSTER: Is there anything wrong with the following function?

/* Day 1: Exercise 5 */
#include <stdlib.h>
#include <stdio.h>

void main(void)

{
long *long_array;
long total = 0;
int ctr;

long_array = calloc(sizeof(long), 10);
printf(“Enter 10 numbers: “);

for(ctr = 0; ctr < 10; ctr++)

{

scanf(“%1d”, long_array+ctr);

28

total += *(long_array+ctr);

printf(“\n\nTotal of numbers is: %l1d”, total);
¥

6. ON YOUR OWN: Write a program that declares a structure containing a
first name, last name, and middle initial. Do not limit the number of names
the user is able to enter. Print the names after the user is done entering them.
Use a dynamic memory function.

Note: Answers are not provided for the ON YOUR OWN exercises. You
are on your own!

Tip: ON YOUR OWN programs typically require rewriting listings
\ presented within the day’s materials.

A3

7. ON YOUR OWN: Write a function that allocates a given amount of
memory and initializes the memory to a specified value. Following is an
example prototype and an example call:

Prototype:

void * initialize_memory(void * pointer, size_t size, char
initializer);

Calling the function:

char *name;

/* initialize name to Xs */
name = (char *) initialize_memory((char *)name, 35, “X7);

29

