Enhancing the
User Interface:
Menuing

WEEK

444

Enhancing the User Interface: Menuing

On Day 13, you created a temporary menu that was somewhat cryptic in regard to
functionality. While the menu worked, it was prone to having the user enter
information that was not valid. Today, you’ll learn how to create and use amuch better
menu. Today you will:

O Learn about adding menus to your application.
O Learn some suggestions for creating menus.

O Add menus to your application’s front end.
0

Add a menu to the entry and edit portion of your application.

What Is Considered a Menu?

A menu is a list of choices available for selection. These choices can usually be made
in one of several ways. Figure 14.1 presents a menu along with tags showing various
ways to select an item.

Menu Selection Item

Highlight
- Musical ltems el

Shadow

Figure 14.1. A menu.

The menu in Figure 14.1 is a menu that you will actually create today. This menu is
like many menus in that it offers several ways of selecting an item. The most obvious
way of selection is to use the cursor keys to scroll the highlight bar up and down.
Additionally, the Home and End keys place the cursor on the first or last menu item.
Each row of the menu, or each selection item, has several other ways that it can be
selected. The numeric value to the left of each option can be used. For example, if you
press 4, the Exit program option will be highlighted. In addition to the obvious
numeric value, a mnemonic character can be used. For example, you can type E or e
to also select Exit program. The mnemonic key used is generally the first letter, or the

most descriptive letter of the selection item. The actual selection of an item is made
by pressing Enter. Additionally, other keys may apply when you are on a menu. Inthe
menu presented in Figure 14.1, if the Escape key is pressed, it may act in the same
manner as if menu selection 4 were selected.

Expert Tip: In most cases, the mnemonic key is the first letter of the
\ menu item. Although it starts with E, when Exit is a menu item, it is a
23 common practice to use X as the mnemonic.

Displaying a Menu

Todisplay amenu is not a quick process; however, taken in stride, it isn’t too difficult.
Listing 14.1 presents a function called display_menu(). In this listing, you’ll notice
a lot of similarities to the getrine() function that was presented on Day 10. This
listing will be explained throughout the sections immediately following it.

Type Listing 14.1. MENU.C. The display_menu() routine.

1: /¥ ———————————————
2: * Program: MENU.C

3: * Authors: Bradley L. Jones

4: * Gregory L. Guntle

5: * Purpose: Manages a menu on the screen

6: *

7: * Enter with: * row, col - for positioning menu

8: * * box_type - SINGLE_BOX, DOUBLE_BOX or NOBOX
9: * * array of ptrs to the menu items to display
10: * array Is setup this way:

11: * char *array_name[10] = { “menu item”,
12: * “keys” }; etc.
13: * * nbr_items - number of menu items (incl keys)
14: * * exit_keys - special keys for exit menu

15: * (F3, etc)

16: * * address to return menu item selected in

17: * * arrow flag - should R/L arrows be used

18: * * do_shadow - should shadow be displayed?

19: *

20: * Returns: The exit key and modifies one parm to hold the
21: * selected item.

22: *

23: * Note(s): The cursor is turned off. Calling function

continues

445

446

Enhancing the User Interface: Menuing

Listing 14.1. continued

24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:

*

*

must turn it back on if it is needed.

*/

#incl
#incl
#incl
#incl

ude <string.h>
ude <conio.h>
ude “tyac.h”

ude “colortbl.h”

/*

* Ex
*

ternal Global variabl

es defined in MAIN *

*/

extern struct color_table ct;

/* *

* Global variables for other functions in this file *
* */
int row, col;

int nbr;

char **menu_ptr;

char *EXIT_KEYS;
int nbr_exit_keys;

/* *
* Function declarations used in this file *
* */
int display_menu(int, int, int, char **,

int, char *, int *, int, int);

void rewrite_menu_items(int, int);
int check_menu_keys(char);

/* ___ *
* DISPLAY_MENU: *
* *
* This function does the real chore in handling *
* menus. *
K e e e e e e e e e */

int display_menu(int srow, int scol,

int box_type,

char **menu, int nbr_items, char *exit_keys,

int *sel,

i=0;

menu_pos;
old_menu_pos;
loop_exit = FALSE;

int arr_flg, int do_shadow)

/* Maintaining menu selections */

73: int ch; /* Character pressed */

74: int max_len 0; /* max string length in array */
75: int temp_len = 0;

76: int key_ found; /* Indicate if key is exit keys */
77: char *ptr_to_key; /* Holds comp val for matching keys */
78:

79: Y *
80: * Set up global variables - other functions to use *
81: A ——————————————————— */
82:

83: /* Set Global ptr to menu items */

84: menu_ptr = menu;

85: row = srow;

86: col = scol;

87: EXIT_KEYS = exit_keys;

88: nbr = nbr_items;

89: /* number of exit keys */

90: nbr_exit_keys = strien(EXIT_KEYS);

91:

92: /* */

93: /* Calculate string lengths */

94: /* e */

95:

96: while(C 1 < (nbr/2))

97: {

98: temp_len = strlen(*(menu+(i*2)));

99: if(temp_len > max_len)

100: {

101: max_len = temp_len;

102: }

103: i++;

104: }

105:

106: nbr = nbr_items/2; /* Exclude keys of selection */
107:

108: /* ————— */

109: /* IT Box is needed Draw now */

110: /* ———— */

111:

112: if (box_type != 0)

113: {

114: if(do_shadow == SHADOW)

115: {

116: grid(row, row+nbr+1, col-3, col+max_Ilen,

117: ct.shdw_fcol, ct.bg_bcol, 2);

118: }

119:

120: box(row-1, row+nbr, col-2, col+max_len+1,

121: box_type, FILL_BOX, ct.abar_fcol, ct.abar_bcol);
122: }

continues

447

448

Enhancing the User Interface: Menuing

Listing 14.1. continued

123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:

/*
/'k
/*

/* Display menu */
for (i=0; i<nbr; i++)
{
write_string(*(menu+(i*2)),
ct.menu_fcol, ct.menu_bcol, row+i, col);

}

/* Highlight first menu item */
write_string(*(menu), ct.menu_high_¥fcol,
ct.menu_high_bcol, row, col);

___ */
cursor_off(); /* Turn off cursor */

old_menu_pos = 1; /* Track selection prior */
menu_pos = 1; /* Track current sel */

while (loop_exit == FALSE)
if ((ch=getch()) == 0)

/* Scan code so read next byte */

ch = getch(Q);

switch (ch)

{

case HOME: /* goto to TOP of menu */
menu_pos = 1;
rewrite_menu_items(menu_pos,
old_menu_pos);

old_menu_pos = menu_pos;
break;

case END: /* goto LAST menu item */
menu_pos = nbr;
rewrite_menu_items(menu_pos,
old_menu_pos);
old_menu_pos = menu_pos;
break;

case RT_ARROW: /* Is LR Arrow movement allowed ?*/
if (arr_flg == NO_LR_ARROW)
{
/* No - treat like DN_ARROW */
menu_pos++;

172: if (menu_pos > nbr)

173: menu_pos = 1;

174: rewrite_menu_items(menu_pos,
175: old_menu_pos);
176: old_menu_pos = menu_pos;

177: }

178: else

179:

180: /* LR movement allowed */

181: loop_exit = TRUE;

182: }

183: break;

184:

185: case LT_ARROW: /* Is LR Arrow movement allowed ?*/
186: if (arr_flg == NO_LR_ARROW)

187: {

188: menu_pos--;

189: if (menu_pos < 1) /* At end ? */
190: menu_pos = nbr;

191: rewrite_menu_items(menu_pos,
192: old_menu_pos);
193: old_menu_pos = menu_pos;

194: }

195: else

196: {

197: /* LR movement allowed */

198: loop_exit = TRUE;

199: }

200: break;

201:

202: case DN_ARROW: /* Move DOWN one menu selection */
203: menu_pos++;

204: it (menu_pos > nbr)

205: menu_pos = 1;

206: rewrite_menu_items(menu_pos,

207: old_menu_pos);
208: old_menu_pos = menu_pos;

209: break;

210:

211: case UP_ARROW: /* Move UP one menu selection */
212: menu_pos--;

213: it (menu_pos < 1) /* At end ? */
214: menu_pos = nbr;

215: rewrite_menu_items(menu_pos,

216: old_menu_pos);
217: old_menu_pos = menu_pos;

218: break;

219:

220: default: loop_exit = check_menu_keys(ch);

221: if (loop_exit == FALSE)

continues

449

450

Enhancing the User Interface: Menuing

Listing 14.1. continued

222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:
266:
267:
268:
269:
270:

}

}

else

{

{

}

/* key a valid exit key ?*/
boop();

break;
/* end of switch */

/* end of if

switch (ch)

{

case CR_KEY:

case ESC_KEY

*/

/* test for other special keys */

loop_exit = TRUE;
break;

/* is ESC_KEY an exit key? */

i =0;
while(i < nbr_exit_keys && !'loop_exit)

if (ch == EXIT_KEYS[i++])
{

}

loop_exit=TRUE;

}

if("loop_exit)

boop();

break;

default: /* Search thru valid keys on Menu items */

i=0

key_found = FALSE;
while (i<nbr && 'key found)

{

}

p
i

{

}

e

}

tr_to_key = strchr(*(menu+(i*2)+1), ch);
T (Iptr_to_key)

/* Not found - look at next one */

i++;
Ise

/* found key - exit */

key_ found=TRUE;

271:

272: if (Tkey_found)

273: {

274: boop(Q);

275: }

276: else

277: {

278: /* Found letter - position menu sel */
279: menu_pos = i+l;

280: rewrite_menu_items(menu_pos,
281: old_menu_pos);
282: old_menu_pos = menu_pos;
283: }

284: break;

285:

286: } /* end of switch */

287: } /* end of else */

288:

289: } /* end of while loop */

290:

291: *sel = menu_pos;

292: return(ch);

293:

294: }+ /* end of subroutine display_menu */

295:

296:

297: /* *
298: * function: rewrite_menu_items() *
299: * *
300: * This subroutine redisplays the menu items. *
301: * The previous selection in NORMAL colors *
302: * and the new selections in HIGHLIGHTED colors. *
303: * e */
304:

305: void rewrite_menu_items(int new_pos, int old_pos)
306: {

307: /* rewrite last selection - normal colors */
308: write_string(*(menu_ptr+((old_pos-1)*2)),

309: ct.menu_fcol, ct.menu_bcol,

310: row+old_pos-1, col);

311:

312: /* Now rewrite new one w/selections color */
313: write_string(*(menu_ptr+((new_pos-1)*2)),

314: ct_menu_high_fcol, ct.menu_high_bcol,
315: row+new_pos-1, col);

316: }

317:

318: /* - *
319: * function: check_menu_keys() *
320: * *

continues

451

452

Enhancing the User Interface: Menuing

Listing 14

.1. continued

321:
322:

323:
324:
325:
326:
327:
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:

in

{

ok % X X %

This subroutine checks the key pressed against *
a list of keys that can end the procedure. *
It receives the key pressed and returns TRUE *
if key is in the list, else FALSE if not in *
list. *

t check_menu_keys(char key pressed)
/* return a true or false to return_code */
int return_code=FALSE;
int loop_ctr = 0;
while (loop_ctr < nbr_exit_keys && !return_code)

it (key_pressed == EXIT_KEYS[loop_ctr++])
{

}
¥

return_code=TRUE;

return(return_code);

Aol

The display_menu() function includes several headers. You should notice that
two local header files are included in the listing rather than just the TYAC.H
header that you have seen in most of the functions presented so far. The new
headeris COLORTBL.H. Thisisa header file that containsa color table structure that
isalmost identical to the structure in RECORD.H from Day 13. Listing 14.2 presents

the COLORTBL.H header file.

Type

Listing 14.2. COLORTBL.H. The color table.

O©CoO~NOUMWNEPRE

/*

*

*

*
*
*
*

#i
#d

Filename: COLORTBL.H
Author: Bradley L. Jones & Gregory L. Guntle

Purpose: Header file for color table definition

fndef __ COLORTBL
efine _ COLORTBL

*/

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:

* color table

A e e e e */

struct color_table

{
int bg_fcol; /* background */
int bg_bcol;
int fld_prmpt_fcol; /* Tield prompt */
int fld_prmpt_bcol;
int fld_fcol; /* input field */
int fld_bcol;
int fld_high_fcol; /* highlight character */
int fld_high_bcol;
int ttl_fcol; /* screen title */
int ttl_bcol;
int abar_fcol; /* action bar & bottom */
int abar_bcol;
int menu_fcol; /* menu text */
int menu_bcol;
int menu_high_fcol; /* Highlighted menu line */
int menu_high_bcol;
int err_fcol; /* error */
int err_bcol;
int db_fcol; /* dialog box & msg box */
int db_bcol;
int help_fcol; /* help box colors */
int help_bcol;
int shdw_fcol; /* shadow color */

};

/* __ *

* extern declarations for global variables *

R e e e e e e e e e e e e */

extern struct color_table ct;

#endif

/* *

* end of header *

*

*/

453

454

Enhancing the User Interface: Menuing

As you can see, this listing is just the color table. The inclusion of four more color
variables has been made to the color table. These are in lines 36 to 40. The values stored
in these variables will be used in drawing the menu (menu_fcol and menu_bcol) and
highlighting the currently selected menu item (menu_high_fcol and menu_high_bcol).

You may wonder why the RECORD.H header file was not included instead of the
new COLORTBL.H header file. While the RECORD.H header file already had a
color table structure, italso contains structures that are specific to the Record of Records!
application. The display_menu() function will be added to the library. In any
applications that use the display_menu() function, the color table will need to be
included. The other structures that are included in the RECORD.H header file will
not be needed by other applications; however, the color table will. By moving the color
table into its own file, it can be included wherever needed.

Tip: Remove the color table structure from your RECORD.H file
\ and include the COLORTBL.H header instead. You can include the
3 color table header file in the RECORD.H header file.

The Parameters for the
display_menu() Function

The display_menu() function can be reviewed starting at the top. Like most of the
functions presented in this book, the display_menu() function’s listing starts with
several lines of comments. You should pay special attention to lines 7 to 18, which
display information on each of the parameters that will be received by the function.

The first two values that will be received by the display_menu() function compose the
position for the menu. As you will see later, these are the coordinates where the text
in the first menu selection item will be positioned. The surrounding box will be offset
from this position. The box types have already been defined in your TYAC.H header
file with the exception of NoBox. You should add a type definition for noox. Set it to
a value other than those already used by the other box type definitions.

The fourth parameter is a pointer to a pointer called menu. You can cross-reference this
variable to the beginning of the function in line 65. The menu pointer is used to point
to an array of strings. These strings should contain the selection items that will be
presented in the menu. Every other item in the array should contain a string with the

escape keys. Following is an example of an array that has been created to be passed in
the menu parameter:

char *menu[10] = {

1. Musical Items “, “1Mm”,
“2. Group Information”, “2Gg”,
“3. Medium types “, 3T,
“4 . Reporting “, “4Rr”,
“5. Exit System *“, “bEe” };

As you can see, the first item is a menu selection item option. The second is the
selection keys, or mnemonics, that will place the highlight on the given option. In this
example, the menu will have five different options, each with its own set of
mnemonics.

The fifth option contains a number stating how many items are in the menu array.
In the previous example, there were 10 items in the array—five menu items and five
sets of selection mnemonics. This number is needed by the menu program to know
how large the menu array is. If the menu program didn’t receive this number, it
wouldn’t know where the end of the menu array is.

Do | DON"T]

DON'T forget the mnemonic strings.

DO remember to pass the total of both the menu selection items and the
mnemonic strings in parameter five.

The next item is a character array similar to one seen in the gettine() function. This
is the exit_keys array that contains the keys that will cause the menu program to end.
An example of an exit key array would be:

char MENU_EXIT_KEYS[MAX_KEYS] = {F3, F10, ESC_KEY};

For the menu that uses this array, the F3 key, F10 key, and Escape keys will all cause
the menu to return to the calling program. In addition, the Enter key will also work.
In fact, the Enter key is defaulted to always work.

The next parameter is a pointer to an integer. This integer, called sel in line 67, will
be used to store the number of the final menu selection. Each selection item is given
anumber starting with one for the top item. When a selection is made or when an exit
key is pressed, the value of se1 will be filled with the currently highlighted item.

The last two parameters are flags. First is the arrow flag, arr_f1g, which informs the

455

Enhancing the User Interface: Menuing

display_menu() program whether the left and right arrows are to be used as exit keys.
When working with action bars on Day 15, you'll find that it is advantageous to treat
the arrow keys as special exit keys. If a single menu is being used, then this flag should
be turned off so that the arrow keys won't exit the menu. Defined constants should
be added to your TYAC.H header file to be used for this parameter:

#define NO_LR_ARROW 0 /* Are Left/Right allowed to exit menu */
#define LR_ARROW 1

The last parameter, do_shadow, takes a similar value. It, however, is used to determine
whether a shadow should be placed on the box containing the menu. Again, defined
constants can be added to your TYAC.H header that can be used for this parameter:
/* Menu shadow options */

#define SHADOW 1
#define NO_SHADOW 0

‘ Warning: The listings presented later assume that you have added the
.’ previous type definitions to your TYAC.H header file.
[Y

Inaddition to these parameters, there are several other values that are declared globally
for the display_menu() function to use. Line 36 has a definition for the external color
table. You will need to set up a color table in any program that is going to use the
display menu function. Lines 42 to 46 declare global variables that will be used to hold
copies of some of the parameters to avoid losing their values while processing the
menu. In addition, these global variables will give all the functions in the listing access
to necessary information.

‘ Warning: You must set up a global color table structure called ct in any
’ programs that call display_menu(Q).

a
Several local variables are also declared within the display_menu() function in lines

69 to 77. The comments included in the code detail what these do. If no comment
is included, then they will be covered as they are used in the function.

The display _menu() Function

The actual display_menu() function begins in line 65 of Listing 14.1. The function’s

456

processes begin in lines 84 to 90 with some of the parameter variables being copied
to local variables. Lines 96 through 104 determine the length of the longest menu
selection item. This number, which will be stored in max_ten, will be used to
determine how wide to draw the menu box. In line 98, the length of a menu selection
item is determined. The menu selection items are retrieved using the parameter menu.
Don’t forget thatmenu is a pointer to an array of strings. This means that dereferencing
the value of menu produces a string. If you add 0 to menu and then dereference it, you
get thefirst string in the array. If you add 1 tomenu and dereference, you get the second
string. Because menu contains both selection items for the menu and mnemonic
strings, you will only want to check the length of every other item. The multiplication
of i by 2 does just this.

Line 106 resets the value stored in nbr to the number of selection items on the menu
instead of the number of items in the menu array that was passed in. The nbr variable
will be used throughout the rest of the listing.

Lines 108 though 138 draw the menu on the screen. Line 112 checks to see if a box
is to be drawn. If so, then line 114 determines if a shadow should also be drawn. If a
shadow is to be drawn, then the grid) function is used. Line 120 then draws the box
with the appropriate boarder. The menu box is drawn in the same color as the action
bar. You should note that the row and column values passed to display_menu() are
used to position the text. Because of this, the box is drawn outside of this position. In
line 120, you should be able to see that the box is drawn with one row above and below
the selection items. In addition, the box is drawn two columns to the left of the
position provided. This gives sufficient border room within the menu. Lines 128 to
133 display each of the menu selection items that were provided in the menu array.
Again, notice that every other element of the menu array is printed by adding an offset
times two to menu. The final step to drawing the initial menu is to highlight the first
item on the menu. This is done in line 136 by rewriting the first item in the menu
highlight colors.

Note: You'll need to compensate for the box position when passing row
and column values to the display_menu() function if you are displaying a
box. If you opt not to display a box, then the text will be in the row and
column position.

Now that the menu is drawn, you are almost ready to give control to the user just as
you did with getline() on Day 10. Because a cursor is not needed for menuing, line

14

457

458

Enhancing the User Interface: Menuing

141 turnsthe cursor off. Line 142 saves the current menu positionand the prior menu
position. Because the menu has not been used yet, both values are set to the first menu
item, 1. With this completed, a white loop is started that will process until the user
exits the menu.

Line 147 gets a key hit from the user with the getch() function. If the value retrieved
is equal to 0, then a scan code was entered. Lines 148 to 228 process the scan codes.
If a non-scan code key was entered, then the else in lines 229 to 287 is called.

Processing the Menu Scan Codes

If a scan code was entered, then getch(® must be called a second time to see what the
scan code is. This is done in line 150. A switch statement is then used to determine
the appropriate processing for the scan code (lines 151 to 227). Several scan keys have
special processing. If one of the special scan keys is not pressed, then a default case, in
lines 220 to 226, is called that checks to see if the scan key is a valid exit key. This is
done using the check_menu_keys() function in lines 318 to 343. This function is
virtually identical to the exit key function that was in getline().

The Menu and the Home Key

The Home key positions the highlight on the first menu item. This is done by setting
menu_pos t0 1, then calling the rewrite_menu_items() function, and finally setting the
old menu position, old_menu_pos, to the current menu position, which is 1.

The rewrite_menu_items() is used by many of the scan codes. This function is
presented in lines 297 to 316. The rewrite_menu_items() function takes the new
position, new_pos, and the old position, old_pos. The purpose of this function is to
remove the highlight from the old position and highlight the new position. This is
done by calling write_string() for each. Line 308 calls write_string() to remove
the highlight from the old option. The old option is rewritten on the menu in the
normal menu colors, menu_fcol and menu_bcol. Don’t be confused by the string that
is passed to write_string() as the first parameter. This is the same information that
you have seen previously in drawing the menu:

*(menu_ptr+((old_pos-1) * 2))

Thisissimply anoffsetinto the menu itemsarray that was mentioned earlier. menu_ptr
is a global variable set to point to the array of strings. Starting from the middle, this
code is easy to follow. The old menu position is converted to a 0 offset by subtracting
1. This is then multiplied by 2 because only every other item in the menu array is a
menu selection item—don’t forget you need to skip the mnemonics. This determines
the offset that needs to be added to menu_ptr and then dereferenced to get the

appropriate menu selection item string.

Thesecondwrite_string() in line 313 works in the same manner. Instead of writing
the selection item in the normal menu colors, the highlight colors are used.

The Menu and the End Key

The End key works just the opposite of the Home key. The new menu position is set
to the last menu item, which is now stored in nbr because it was divided by 2 in line
106. This new position is then passed along with the old menu position to the
rewrite_menu_items() function to update the menu. The old position is set to the
new position, and the menu processing continues.

The Menu and the Arrow Keys

The right and left arrow keys may either exit the menu program or work in the same
manner as the up and down arrow keys. This is based on the arr_f1g argument that
was passed to the display_menu() function. In line 168, the arr_f1g is checked to
determine if the arrows are supposed to exit the program. If the arrows are disabled
in regard to exiting, then the if is executed. If the right arrow is used, the menu
position will be incremented by one. The new position will be checked to ensure that
it has not scrolled off the bottom of the menu. If the new position is off the menu, then
the position will be reset to the first menu item (lines 171 and 173). For the left arrow
key, the menu position is decremented and set to the last position if needed (lines 188
t0 190). The process is completed by calling the rewrite_menu_items() function and
updating the old menu position.

If the right and left arrow keys are set to exit, then the else statements are executed
in lines 178 to 182 for the right arrow, or lines 195 to 199 for the left arrow. In these
cases, the flag to exit the loop, 10op_exit, is set to TRUE sO that the while statement
processing the menu will end.

The up and down arrows work in a manner identical to what was described for the
right and left arrow keys. The only difference is that the up and down arrows do not
have the exit options. They simply increment or decrement the current menu
position, check to see that the new position is still on the menu, call
rewrite_menu_items(), save the old menu position, and exit back to the menu.

Processing the Non-Scan Code Menu Keys

A non-scan key can be one of only a few keys. Either the key will be the Enter key, the
Escape key, or an alphanumeric character. If the Enter key was pressed, then line 233

459

460

Enhancing the User Interface: Menuing

will set the looping flag, 1oop_exit, to TRUE 0 that the while loop will end.

If the key pressed was the Escape key, then a check is done to see if itisan exit key (lines
238 to 244). If the Escape key is an exit key, then the 10op_exit flag is set to TrRUE. If
the Escape key is not an exit key, then the 10op_exit key will still be FaLse. This will
cause line 248 to execute the boop() function.

In the case of any other non-scan code value, the default case in line 254 is executed.
Lines 256 to 270 are similar to the search done for an exit key. The difference is that
instead of searching the exit key array, the mnemonic strings in the menu selection
items array are searched. Each string of mnemonic characters is checked using the
ANSI strchr function. This function checks to see if the character the user entered,
ch, is in the mnemonics string for each menu selection item. If it isn’t, strchrQ
returnsanuLL value. Line 260 checks to see if the character was found. If it wasn’t, the
next mnemonic string is checked. If it was, then the white loop is ended by setting a
flag, key_found, t0 TRUE.

Once all the mnemonic strings are checked, or when the entered character is found,
the program continues on. If the character wasn’t found, then line 274 beeps the
computer using the boop() function. If the character was found, then the menu
position isset and the menu items are rewritten using rewrite_menu_items(). Control
is then returned to the menu.

Final Notes on display_menu()

Once the user ends the menu, lines 291 and 292 are performed. Line 291 setsthe value
in the display_menu() selection parameter to the current menu position. Line 292
then returns the last key that was pressed to the calling program.

Using the display _menu() Function

With all of the previous description, you should be raring to use the display_menu()
function. Before adding it to the Record of Records! program, you should look at it
being used in a simpler program. Following in Listing 14.3 is a program showing
exactly how to use the display_menu() function.

Type Listing 14.3. TESTMENU.C. A test program for

display_menu().

/* Program: testmenu.c

* Author: Bradley L. Jones

* Gregory L. Guntle

* Purpose: Demonstrate the menu function.

B WN P

© 00 ~NO U

10:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:

#include <stdio.h>
#include “tyac.h”
#include “colortbl_h”

char *main_menu[10] = {

1. Musical Items “, “1Mm”,
“2. Group Information”, “2Gg”,
“3. Medium types “, “3Tt”,
“4_ Reporting “, “4Rr”,
“5. Exit System “, “BEe” };

char MENU_EXIT_KEYS[MAX_KEYS] = {F3, F10, ESC_KEY};
struct color_table ct;
void initialize_color_table(void);

int mainQ)

*/

{
int rv;
int menu_sel=0;
initialize_color_table();
clear_screen(ct.bg_fcol, ct.bg_bcol);
rv = display_menu(10, 30, DOUBLE_BOX, main_menu, 10,
MENU_EXIT_KEYS, &menu_sel, NO_LR_ARROW,
SHADOW) ;
cursor(20, 0);
printf(“\nSelection = %d \n”, menu_sel);
printf(“Char to exit = %x (hex)\n”, rv);
cursor_onQ);
return(0);
3
/* __ *
* initialize_color_table() *
* *
* Set up global color table for rest of application *
K */

void initialize_color_table(void)

{

ct.bg_fcol YELLOW;
ct.bg_bcol = BLUE;

ct.fld_prmpt_fcol = CYAN;

continues

461

Enhancing the User Interface: Menuing

Listing 14.3. continued

55: ct_fld_prmpt_bcol = BLUE;
56:

57: ct.fld_fcol = BRIGHTWHITE;
58: ct.fld_bcol = BLUE;

59:

60: ct.fld_high_fcol = YELLOW;
61: ct_fld_high_bcol = BLUE;
62:

63: ct.ttl_fcol = BRIGHTWHITE;
64: ct.ttl_bcol = BLACK;

65:

66: ct.abar_fcol = BLACK;

67: ct.abar_bcol = WHITE;

68:

69: ct.menu_fcol = BLACK;

70: ct.menu_bcol = WHITE;

71:

72: ct.menu_high_fcol = BLUE;
73: ct.menu_high_bcol = CYAN;
74:

75: ct.err_fcol = YELLOW;

76: ct.err_bcol = RED;

77:

78: ct.db_fcol = WHITE;

79: ct.db_bcol = BROWN;

80:

81: ct.help_fcol = YELLOW;
82: ct_help_bcol = GREEN;

83:

84: ct.shdw_fcol = BLACK;

85: }

it

H. Musical Items

Anal 1 While the display_menu¢) function was complex and long, using it isn’t too
YSI difficult. As you can see, half of the TESTMENU.C listing is used to set up the
color table with the colors to be used. This is done in a function called

462

initialize_color_table() in lines 43 to 85. This function is almost identical to the
function presented on Day 13 in the RECOFREC.C listing.

Expert Tip: You should notice that the menu foreground color,
\ menu_fcol, and the menu background color, menu_bcol, are set to the
A3 same colors as the action bar. This is a common practice.

In lines 8 and 9, you see the TYAC.H header file being included for your library
functions, and you see the COLORTBL.H header file being included for the color
table structure. Lines 11 to 16 contain the menu structure with the mnemonic keys.
Thisstructure will be passed to the display menu function. Line 18 sets up the exit keys
for the menu. The last couple of lines before the program start declare a color table,
ct, and provide a prototype for the function that will be used to initialize the color
table.

The main() function begins in line 24. This function sets up the color table, calls the
menu, prints a couple of lines, restores the cursor, and ends. This is a small amount
of code when you consider all the program does. The reason for the small amount of
code is because of the power of the display_menu() function that you have created.

You should review the call to the display_menu() function in line 32. As you can see,
this menu will be placed with the text starting in row 10 and column 20 (the first two
parameters). The menu will be in a box with a double-lined border (third parameter).
The main_menu pointer, declared in lines 11 to 16, will be passed in the fourth
parameter. Because this array has 10 elements, the number 10 is the fifth parameter.
This is followed by the name of the exit key array, which was declared in line 19. The
selection thatis chosen will be filled into the next parameter, which isthe local integer,
menu_sel. Notice that the address of the menu_sel variable is passed because
display_menu() isexpecting an address. The last two parametersareno_LR_ARRow and
sHapow. These tell display_menu() that the left and right arrows shouldn’t exit the
menu. Additionally, the menu should have a shadow. When you run the program, you
should use the left and right arrow keys to see what they do.

Tip: Change the No_LR_ARRoW parameter to LR_ARRow and rerun the
\ program to see the effect. Change sHabow to No_sHADow and see what
2 3 effect that has.

463

Enhancing the User Interface: Menuing

Lines 37 and 38 printinformation that can be determined after acall todisplay_menu().
Line 38 prints the returned value from the function. This is printed in hexadecimal,
however, you may choose to print it in decimal by changing thextoad inthe printfQ).
You will find that this value should match one of the exit keys that you set up or the
value of Enter. Line 37 prints the value that display_menu() placed into the seventh
parameter, menu_sel. Thiswill be the number of the option that was highlighted when
the user exited the menu.

Adding a Menu to Record of Records!

Now that you have seen a menu in use, you should be ready to use them in your
applications. The Record of Records! application would be a good place to begin.
Following is Listing 14.4. This is a replacement for the RECOFREC.C listing
presented in Day 13. Instead of the cryptic menu provided on Day 13, this listing uses
the display_menuQ) function.

Note: You should replace your RECOFREC.C listing with
Listing 14.4.

Listing 14.4. LIST1404.C. A new Record of Records!

Type listing.
1: /*
2: * Filename: RECOfREC.c
3: * RECORD OF RECORDS - Version 1.0
4: *
5: * Author: Bradley L. Jones
6: * Gregory L. Guntle
7: *
8: * Purpose: Allow entry and edit of medium codes.
9: *
10: * Note: Assumes 80 columns by 25 columns for screen.
11: * */
12:
13: #include <stdio.h>
14: #include <conio.h> /* not an ANSI header, used for getch() */
15: #include <string.h> /* for strlen() */

16: #include <ctype.h>
17: #include “tyac.h”
18: #include “records.h”

464

21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
A47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:

* prototypes *
*
#include “recofrec.h”

void initialize_color_table(void);

/* __________________________ *
* define global variables *
x */

struct color_table ct; /* color table */

/* *
* main() *
* */

main(Q)

{

int rv = 0;
int cont = TRUE;
int menu_sel = 0;
char *main_menu[10] = {
“1. Enter Musical Items “, “1Mm”,
“2. Enter Medium Codes “, “2Cc”,
“3. Enter Group Information “, “3Gg”,
“4_ Reporting “, “4Rr”,
“5. Exit System “, “5EeQgXx” };

char MENU_EXIT_KEYS[MAX_KEYS] = {F3, F10, ESC_KEY};
initialize_color_table();

while(cont == TRUE) /* loop in temp menu */

{

draw_borders(*“ RECORD of RECORDS! “);
write_string(“Help”, ct.abar_fcol, ct.abar_bcol, 1, 3);

rv = display_menu(10, 27, DOUBLE_BOX, main_menu, 10,
MENU_EXIT_KEYS, &menu_sel, NO_LR_ARROW,
SHADOW) ;

switch(rv)

{
case ENTER_KEY: /* accept selection */

case CR:
switch(menu_sel)

continues

465

466

Enhancing the User Interface: Menuing

Listing 14.4. continued

71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:

//

//
//

case F3:

case ESC_KEY:

case F10:

default:

/* clean up

case 1: /* Menu option 1 */
cursor_on();
do_albums_screen();
break;

case 2: /* Menu option 2 */
cursor_on();
do_medium_screen();
break;

case 3: /* Menu option 3 */
cursor_on();
do_groups_screen();
break;

case 4: /* Reporting */
boop() ;

boop();
break;

case 5: /* exit */
cont = FALSE;
break;

default: /* continue looping */

boop();
break;

}
break;
/* exiting */

cont = FALSE;
break;

/* action bar */
rv = do_main_actionbar();

ifCrv ==F3)
cont = FALSE;

break;

boop();
break;

screen for exit */

/* could display “Are you sure message’

120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:

Vo

{

Vo

{

clear_screen(BRIGHTWHITE, BLACK);

cursor_on();

cursor(0,0);

repeat_char(“ “, 80, YELLOW, BLUE);

write_string(“Thank you for using RECORD OF RECORDS!”,
YELLOW, BLUE, 0, 21);

return O;

id draw_borders(char *title)

int col=0; /* used to center title */

clear_screen(ct.bg_fcol, ct.bg_bcol);

col = ((80 - strlen(title)) /7 2);

write_string(title, ct.ttl_fcol, ct.ttl_bcol, 0, col);
cursor(1,0);

repeat_char(“ “, 80, ct.abar_fcol, ct.abar_bcol);

cursor(24,0);
repeat_char(* “, 80, ct.abar_fcol, ct.abar_bcol);

id display_msg_box(char *msg, int fcol, int bcol)

char *saved_screen = NULL;
saved_screen = save_screen_area(11, 15, 19, 60);

grid(12, 15, 19, 59, ct.shdw_fcol, ct.bg _bcol, 3);
box(11, 14, 20, 60, SINGLE_BOX, FILL_BOX, fcol, bcol);

write_string(msg, fcol, bcol, 12, 23);
write_string(“Press any key to continue...”,
fcol, bcol, 13, 23);

cursor_off();
getchQ;
cursor_onQ);

restore_screen_area(saved_screen);

continues

467

468

N
X

% X X % ok ok F

: char yes_no_box(char *msg, int fcol, int bcol)

A

}

char ch;
char *saved_screen = NULL;
saved_screen = save_screen_area(11, 15, 19, 60);

grid(12, 15, 19, 59, ct.shdw_fcol, ct.bg_bcol, 3);
box(11l, 14, 20, 60, SINGLE_BOX, FILL_BOX, fcol, bcol);

write_string(msg, fcol, bcol, 12, 23);
write_string(“Enter (Y) or (N)”, fcol, bcol, 13, 23);

cursor_off();
ch = getch(Q);
ch = toupper(ch);

while(ch 1= “Y” && ch 1= *N”)
{

}

ch = toupper(getch());

cursor_on(Q);
restore_screen_area(saved_screen);
return(ch);

Function: zero_fill_field(); *
Purpose: Right justifies a character array and then*
pads the left side with zeros. (Assumes *
that the field is NOT null terminated.) *
Returns: # of zeros used to pad field *
-1 if field too large (longer than 20) *
0 if field is blank (not padded) *

int zero_fill_field(char *field, int size)

- {

int ctr,
pads = 0;

char tmp[20];
if(size > 20)

{
pads = -1; /* field too long */

219: 3}

220: else

221: if(strlen(field) == 0)

222: {

223: pads = O; /* leave blank fields blank. */

224: }

225: else

226: {

227: pads = size - (strlen(field)); /* How many 0s? */
228:

229: for(ctr = 0; ctr < pads; ctr++) /* pad tmp field */
230: tmp[ctr] = “07;

231:

232: /* copy original info to end of tmp field */
233: strncpy(tmp+pads, field, strien(field));

234: /* replace original field with padded tmp */
235: strncpy(field, tmp, size);

236: }

237:

238: return(pads);

239: }

240:

241 /F *
242: * initialize_color_table(Q) *
243: * *
244: * Set up global color table for rest of application *
245: *or o */
246:

247: void initialize_color_table(void)

248: {

249: ct_bg_fcol = YELLOW;

250: ct.bg_bcol = BLUE;

251:

252: ct.fld_prmpt_fcol = CYAN;

253: ct.fld_prmpt_bcol = BLUE;

254:

255: ct_fld_fcol = BRIGHTWHITE;

256: ct.fld_bcol = BLUE;

257:

258: ct_fld_high_fcol = YELLOW;

259: ct.fld_high_bcol = BLUE;

260:

261: ct.ttl_fcol = BRIGHTWHITE;

262: ct.ttl_bcol = BLACK;

263:

264: ct.abar_fcol = BLACK;

265: ct.abar_bcol = WHITE;

266:

267: ct.menu_fcol = BLACK;

268: ct.menu_bcol = WHITE;

continues

469

470

Enhancing the User Interface: Menuing

Listing 14.4. continued

269:

270: ct._menu_high_fcol = BLUE;

271: ct.menu_high_bcol = CYAN;

272:

273: ct.err_fcol = YELLOW;

274: ct.err_bcol = RED;

275:

276: ct.db_fcol = WHITE;

277: ct.db_bcol = BROWN;

278:

279: ct_help_fcol = YELLOW;

280: ct.help_bcol = GREEN;

281:

282: ct_.shdw_fcol = BLACK;

283: }

284:

285:

286: /* *
287: * end of listing *
288: * */

. Enter Musical Items

Analys| Much of this listing is the same as the original RECOFREC.C listing. The

changesstartinthemain(function. Line 41 setsup amenu_sel variable to accept

the return value from the menu that will be displayed. Lines 43 to 48 set up the
menu items that will be displayed along with their mnemonic values. Line 50 sets up
the exit keys. For this main menu, the F3, F10, and Escape keys will all cause the menu
to exit. By default, the Enter key will also cause the menu to exit.

Line 52 calls the initialize_color_table() function that is presented in lines 241
to 285. As you can see, lines 262 to 266 include the color variables for the menu.

Lines 54 to 114 contain awhile loop that will keep the menu displayed until the user
signals to exit. The screen is drawn in line 57 with a call to draw_borders(). The
draw_borders() function has not changed.

Line 61 begins the actual menu process with a call to display_menu(). The menu is
set up to be in a box with a shadow. In addition, the box will have a double-lined
border. The left and rightarrow keys have been turned off because you don’t want this
menu to end if they are pressed. The menu will be displayed until a user presses one
of the exit keys or makes a selection.

Lines 65 to 117 react to the result of the call to display_menu(). A switch Statement
routes control based on what key was returned from the menu. If F3 or the Escape key
was pressed, then the cont flag will be set to FALsE so that the loop will end. If the F10
key is pressed, then the action bar function will be called. Because this function will
be presented on Day 15, it should be commented out for now.

‘ Warning: The action bar function, do_main_actionbar(), is included in
@ the listing because the F10 key is an exit key for the menu. This function
® will be filled in on Day 15.

If Enter was pressed to exit the menu, then the user made a selection. A switch
statement, in lines 69 to 98, routes the appropriate action based on the value of
menu_sel. Remember that menu_sel contains the number of the selection made. For
selections 1 through 3, the processing is almost identical to what it was before adding
the new menu. Each of the corresponding screen functions is called. The only change
isthat the cursor_onQ) function is called first. Because the menu turned the cursor off,
you need to turn it back on.

The other cases are different. Case 4 calls the boop() function twice. This is done
because reporting won’t be covered until Day 20. If the menu selection was 5, then
the user selected to exit. The cont flag is set to FALSE so that the program will exit. A
default case is also included even though there should never be a value in menu_sel
other than 1 through 5. It’s good programming practice to include a default case in
Every switch.

The last few lines of main) are almost identical to what was presented before. The big
change is the addition of the cursor_on() function in line 121. Without this, the
cursor would remain off even after you exit the program. The rest of the listing is the
same as it was before.

471

472

Enhancing the User Interface: Menuing

Using a Menu with Entry and
Edit

On Day 13, you allowed the user to enter data into entry and edit screens. To retrieve
the data from the user, you used the gettine() function. There are times when only
acertain number of choicesare valid and these choices will never change. For example,
on the Groups screen, you may decide that there are only a certain number of Types
of Music that the user will be able to enter into the system. In this situation, you can
choose to let the user select a value from a menu instead of typing the value.

You already have all the information you need to accept the type of music fromamenu
instead of having the user enter the information. Inthe GROUPS.C listing (originally
presented on Day 13 in Listing 13.5), you included a case for each field on the screen.
Each case did a call to get1ine() along with any edits that may have been required.
The case for the Type of Music field was as follows:

293: case 4 :

294: rv = getline(GET_ALPHA, O, 8, 19, 0, 20,
groups.music_type);

295: break;

Instead of calling get1ine(), this case will now set up to use a menu. To make it easier
to add the menu to the GROUPS.C listing, it will be created in a separate function
that the case will call. Replace the getline() function with the following:
case 4 :
rv = do_type_of _music_menu(groups.music_type);
write_string(groups.music_type,
ct.fld_fcol, ct_fld_bcol, 8, 19);
break;
You will need to add a new prototype at the top of the GROUPS.C file for this
function. The prototype will be as follows:

int do_type_of _music_menu(char *);

Once you have made these changes, you are ready to create the menu in the
do_type_of music_menu() function. The code for thisfunction is presented in Listing

Typ@S You will want to add this to the end of your GROUPS.C listing.

Listing 14.5. The Type of Music entry and edit menu.

/*
* Filename: LIST1405.c

*

B WN PR

* Author: Bradley L. Jones

© 00 ~NO U

10:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:

E B B B B R

Gregory L. Guntle

Purpose: Information to be added to GROUPS.C. This allows
for a menu to be created for the TYPE OF MUSIC
field.

*/
__ *
do_type_of _music_menu(); *
Returns: key used to exit menu *

int do_type_of _music_menu(char *field)

{

char *saved_screen = NULL;

int menu_sel = 0;

int rv;

char *menu_data[22] = {
“Alternative “, “lAa”,
“cLassic rock”, “2LI17,
“classical(X)”, “3Xx7,
“Country “, ““4Cc”,
“Disco *“, “5Dd”,
“Instrumental™, “611”7,
“New age “, “7Nn”,
“Speed metal ““, “8Ss”,
“Rock R
“Pop rock “, “Pp”,
“sofT rock “, “Tt” };

char exit_keys[MAX_KEYS] = { F3, F10, ESC_KEY, SHIFT_TAB };

saved_screen = save_screen_area(6, 20, 27, 60);

rv = display_menu(8, 30, SINGLE_BOX, menu_data, 22,
exit_keys, &menu_sel, LR_ARROW,
SHADOW) ;

cursor_onQ);

switch(

{

rv)

F3:

F10:
ESC_KEY:
SHIFT_TAB:

case
case
case
case break;

case LT_ARROW: rv = SHIFT_TAB;

continues

473

Enhancing the User Interface: Menuing

Listing 14.5. continued

55: break;

56:

57: case RT_ARROW: rv = TAB;

58: break;

59:

60: default: /* item selected */

61: strcpy(field, *(menu_data+((menu_sel-1)*2)));

62: break;

63: }

64:

65: restore_screen_area(saved_screen);

66:

67: return(C rv);

68: }

69:

70: /* *

71: * end of listing *
* */

01 it

Group:

Date Formed: P
Type of Music:

Members :

Description:

Anal |S Once you add this to the GROUP.C listing, you will be prompted with the
)’5 menu presented in the output whenever you enter the Type of Music field. In
looking at the listing, you should see that the menu is done in the same manner
as the menus presented earlier today. Line 21 declares the integer variable to hold the
menu selection. Lines 24 to 35 contain the menu_data array. This is the values that will
be displayed in the menu along with their mnemonics. Line 37 declares the exit keys

that the menu will use.

Tip: You should notice that in lines 25 to 35 one letter in each of the
\ menu items is capitalized. This is the mnemonic letter that will move
. the highlight. You should also notice that even though numbers are

474

y

not presented on the menu, numeric mnemonics are still used. This is
to give the menu added flexibility.

Before displaying the menu, the saved_screen pointer declared in line 20 is used to
save off the area of the screen where the menu will be positioned. Line 40 then saves
the screen using the save_screen_area() function from Day 11. The screen is
restored before the function returns control to the entry and edit screen.

The menu is displaced in line 43. As you can see, a single-bordered box is used along
with a shadow. In addition, the left and right arrows are enabled. Once the menu has
been displayed and returns controls, line 45 turns the cursor back on. (Remember the
menu turns it off.)

Lines 47 to 63 react to the returned value from the call to display_menu(Q) in line 42.
If the F3 key, F10 key, Escape key, or Shift+Tab is pressed, then the key value is
returned to the calling screen to process. If the left or right arrow key is pressed, then
they are translated to sHiIFT_TAB and TAB values and returned to the screen to process.
This causes the left and right arrows to place the cursor on the next or previous field.

If the return value is anything else, then the data should be accepted. The correspond-
ing menu item is copied into the screen field (line 61). Don’t let the math in this line
confuse you. You are copying an element from the menu_data array. The value of
menu_sel isfrom 1to 11, depending on which menu item was selected. The offsetinto
the menu_data array will be 2 times the result of the menu_item selected minus 1 (so
the offsets begin with 0). The reason you multiply by 2 is because only every other item
in the menu_data array is a menu item. You want to skip the mnemonic key strings.

Do | DON’T]

DON'T forget to turn the cursor back on after using the menu.

DO remember to set up the exit keys before calling display_menu().

DO compare display_menu() t0 the getline() function so that you can
understand the similarities.

475

Enhancing the User Interface: Menuing

Summary

Today, you covered the topic of menus. You were presented with a function called
display_menu(), Which enables you to display menus in your applications. Once you
create the display_menu() function, you have the ability to add menus to your
applications with very little work. You are able to display menus at virtually any
location on the screen. In addition, you are able to state which keys you want to work
within the menu. These keys include mnemonics that will take the highlight within
the menu to a specific menu item. Your menus can be displayed in a box, with
shadows, with single- or double-sided borders, and more. Today’s information will
be followed with action bars tomorrow.

Q&A

Q Can menus call other menus?

A Yes, you can have menus call other menus. In fact, action bars on Day 15
will do just that.

Q Is there a maximum number of menu items that can be listed in a menu?

A Yes. Common sense should tell you not to list more items in your menu
than what will fit on the screen.

Q What changes should be made to the TYAC.H header file after creating
today’s programs?

A The following information should be added to the TYAC.H header file to
accommodate the display_menu(function:

/* Menu shadow options */

#define SHADOW 1

#define NO_SHADOW 0

/* ____________________________________ *

* Menu Items *

* */

#define NOBOX 0

#define MAX_MENU_NBR 10

#define MAX_MENU_LEN 30

#define MAX_KEYS 17

#define NO_LR_ARROW 0 /* Are Left/Right allowed to exit

476

menu */
#define LR_ARROW 1

int display_menu(int, int, int, char **, int, char¥*,
int *, int, int);

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned.

Quiz
What are mnemonic characters used for?
Why is it best to keep the color table structure in its own listing?
What does the Home key do within a menu?

What does the Page Down key do within a menu?

o & w oo O

What is the most selection items that you can have on a menu?

EXxercises

1. ON YOUR OWN: Add the display_menu() function to your TYAC.LIB
library.

2. ON YOUR OWN: Be sure to create the COLORTBL.H listing presented
today. Modify your RECORDS.H header to include this listing instead of
containing the color table structure.

3. Write a program that displays a menu with the following options:
1. RED
2. YELLOW
3. BLUE
4. GREEN

Include mnemonics.

477

Enhancing the User Interface: Menuing

4. ON YOUR OWN: Experiment with the NO_LR_ARROW, LR_ARROW, SHADOW,
and No_sHADOW menu parameters.

5. ON YOUR OWN: Create menus in your own applications.

6. What would be appropriate mnemonic keys for the menu selection item,
“5. Exit™

478

