The User
Interface: Screen
Design

WEEK

The User Interface: Screen Design

Now that you have a specification, your direction is set. You are ready to begin
constructing your application. When developing a large-scale application, you should
develop in steps. The specification should be your first step. Today, you’ll begin the
second step. Today you will:

|

|

O

Learn about creating entry and edit screens.
Learn some of the standards for screen design.

Create entry and edit screens for the application presented on Day 12’s
specification.

Create a screen for the musical items (albums).
Create a screen for the medium codes.

Create a screen for the groups.

User Interfaces

The most fun that you’ll have when developing an application is creating the user
interfaces. The user interface is the part of an application that the user sees. These
interfaces are generally screens that allow the entry and editing of information;
however, they may also include menus, pop-up dialog boxes, message boxes, and
more. Figures 13.1 through 13.4 show several different user interfaces.

=] MS-DOS Prompt [~]
RECORD of RECORDS?

1 — Enter Musical Items

2 — Enter Medium Codes

3 — Enter Group Information
Q - Quit

Figure 13.1. A menu interface from a DOS application.

382

Husical Items

Title:
Group:

Hedium: ot

Date Purchased: Al Cost: % i Ualue: $__ .
Track Song Title Time

Total Album Time: __.

Figure 13.2. An entry and edit screen.

Groups

Group:

Date Formed: it i,

Type of Music:

- _E

Description:

Figure 13.3. An informational interface.

All of these interfaces use the text graphics that were discussed on Day 8. There are
also Graphical User Interfaces (GUIs), which take advantage of pixel graphics.
Programssuchas Microsoft's Windows (see Figure 13.4), IBM’s OS/2, and Geoworks
all use graphical user interfaces.

Today, you will learn about entry and edit screens such as the one in Figure 13.2.
Before presenting the code, you'll be introduced to the standards on creating entry
and edit screens. On Day 14, you’ll learn how to create menuing interfaces such as the
onein Figure 13.1. On Day 14, you’ll also cover action bar items. The days following
will help to build the internal functions and reports.

383

The User Interface: Screen Design

Paintbrush - FIGT “T-E-PCX

Program Manager

=|MS Developer Network| » [+
File Manager Cantial Panel Print Manager 3
MS Developer Riekease
Network CD 3 Notes by
= 0]
Cipboard ~ M5DOS Windaws
ﬁz' % Ve Prompt Tuter = Accessories [~[~]
=
= <
B . S - Teminal Hotepad Recorder
D . Report Setup
S m &
D . Cadfle Calendsr Celoulator Clock Object
=] Softel Packager
=
O@ e =
Al Athur's JustGrandma Hew Kid on Character Media Player Sound PIF Editor Selies
Teacher and be Demo the Block Viep Froserder
Trouble Dema Demo
',.‘ 20 r 7im
5 b B & i
— Sysedi Ocd Fegedt Jukebox Sbmiver
—
— -
— L 7S
— N 1
. Startllp Games Setup

Figure 13.4. A graphical user interface (Microsoft Windows 3.1).

Tip: You should concentrate on building your application one day at
\ a time. Today, you should concentrate on creating the entry and edit
. portion of your application.

Creating a User Interface

Many new programmers have a tendency to create screens based solely on what they
believe looks neat. To them, the screen actually may look neat; however, they may not
have considered the audience that will be using the screen. If you are developing a
system that will be given to others, you should consider some standards in screen
design. While there are few published standards, there are informal standards that
have been accepted by most developers.

384

Note: Standards are usually operating-system specific. For example, DOS
applications follow one set of standards, but OS/2 applications have a
different set of standards. Several of the standards may cross operating
systems.

The Benefit of Following Standards

There are several possible benefits that can be gained by following a few standards
when developing your applications. These benefits include:

O Lower learning curve for people using the application.

0 Higher comfort level for users in regard to the application.
0 Consistency among your applications.

O Reduced cost in developing.

O Increased productivity for you.

The most commonly touted benefit is a consistency in look and feel. Because your
application will be designed similar to other programs, users won't feel lost when they
use it (look at it). Because parts of your application will look familiar, users will be able
to concentrate on learning what the heart of the application does, and not the little
things that make the application work. This will help your users increase their
productivity with the application.

Additionally, because many functions are predetermined, you won’t spend time re-
thinking how to accomplish a lot of tasks. This cuts the time you spend on developing
applications, which in turn can increase your productivity and reduce your cost of
development.

The benefits of standards can also be seen with an experiment. If you have several
applications, try running them. Ineachapplication, press the F1 function key. In most
of your applications, this should provide you with help information.

385

The User Interface: Screen Design

Creating a Common User Interface

You should work to create your entry and edit screens similar to others that are
available. To do this, you should understand the parts of a screen. Figures 13.5 and
13.6 present the different parts of anentry and edit screen. You'll see each of these parts
as you develop an application over the next few days.

Figure 13.6. Additional parts of an entry and edit screen.

These figures present an entry and edit screen. There are also standards for working
with menus and function keys.

The Entry and Edit Standards

In the entry and edit portions of an application, there are several areas that you should
concentrate on providing standards. These areas include the interface itself and its
navigation, the function or special keys, and the feedback to the user.

386

The feedback to the user is the most straightforward area. An application should
provide predictable, consistent feedback. If the user does something that is wrong,
either a warning message should be displayed or the computer should beep. A beep
should not be used to signal that something was done right. Additionally, if a user does
something drastically wrong, a message should be displayed explaining what the error
is. Errors can be displayed in message boxes that are red with yellow text to stand out.
In addition, the color red is associated with stopping.

The navigation in an entry and edit window should also follow some standards. WWhen
entering fields on a screen, the user should start at the top left and work toward the
bottom right. When possible, the fields should be presented in the same order as they
would be read on a book page. In addition to this navigation, the keys used should
follow the functionality presented in Table 13.1.

Table 13.1. Standards for navigating an entry and edit window.

Key Function

Enter Accept information on-screen and process. Move to next
entry field.

Page Up Scroll the screen to the previous page, or to the previous set

of information. Go to the first field on the screen.

Page Down Scroll the screen to the next page, or to the next set of
information. Go to the last field on a screen.

up arrow Move the cursor to the previous field. If you reach the top
of the screen, go to the bottom. Move the cursor to the
field directly above the cursor’s current location. If you
reach the top of the screen, go to the bottom.

down arrow Move the cursor to the next field. If you reach the bottom
of the screen, go back to the top. Move the cursor to the
field directly below the cursor’s current position. If you
reach the bottom of the screen, go back to the top.

right arrow Move the cursor to the next position on the current field.

left arrow Move the cursor to the previous position on the current
field.

Tab Move the cursor to the next field on the screen. If on the

last field, go to the first field.

continues

387

The User Interface: Screen Design

Table 13.1. continued

Key Function

Shift+Tab Move the cursor to the previous field on the screen. If on
the first field, go to the last field.

Home Put the cursor on the first position of a field. Put the cursor
on the first field on the screen.

End Put the cursor on the last filled position of a field. Put the
cursor on the last field on the screen.

Ctrl+Home Move the cursor to the first field on the screen.

Ctrl+End Move the cursor to the last field on the screen.

Ctrl+Page Down Move the cursor to the last page.

Ctrl+Page Up Move the cursor to the first page.

Alt Access the action bar if it exists.

Backspace Move the cursor one position to the left if in a field.
Remove the character. Move the cursor to the previous
field.

Delete Delete the character at the current cursor position.

Insert Toggle whether characters are inserted or overwritten in an

Ctrl+left arrow

Ctrl+right arrow

entry field.
Show the page or screen to the left.

Show the page or screen to the right.

Note: These are informal standards. In some cases, more than one usage
is given. This is due to the informality of these uses. You should use these

as guidelines.

The Function Key Standards

The standards for the function keys are probably more important than those for

268 navigation in Table 13.1. Many people get used to the functionality generally

provided by the function keys and other special keys. Table 13.2 presents the
functionality usually associated with these keys. Additionally, the table shows which
keys should not be used for other functions.

Table 13.2. The function keys and other special keys.

Key Reusable Function

F1 No Help (context sensitive)
F2 * Extended Help

F3 No Exit

F4

F5

F6

F7 Previous

F8 Next

F9 Help on key assignments
F10 o Access action bar

F11 Provide alphabetical listing of help topics
F12

Escape No Cancel current task

No means you should not reuse the key.
** Means you can reuse it, but it is not advised.

Note: You should avoid the F11 and F12 keys because not all computers
have them.

389

o ® DAY ®
13 The User Interface: Screen Design
4

390

‘ Warning: Do not change the function of the keys in Table 13.2 that are

’ marked. Keys such as F1 and F3 have been used in too many applications
® to be given different functions unless you have no choice. Most people will
assume F1 will provide help and F3 will provide a way of exiting.

Note: While standards for menuing exist, they won’t be covered here.
Day 14 covers menuing in detail.

Creating an Entry and Edit
Screen

The three entry and edit screens that make up the Record of Records! application
specified on Day 12 will be created today. These entry and edit screens include the
Medium Codes screen, the Group Information screen, and the Musical Items screen.
Each screen will be modeled after the screens in the prototypes of Day 12's
specification. Day 14 will present a menuing program that will tie all three of these
entry and edit screens together into a single application.

Because menuing won't be covered until Day 14, you’ll need a temporary way of
accessing the entry and edit screens. In addition to providing a cryptic menu, Listing
13.1—the RECOFREC.C listing—jprovides several functions. Most importantly,
Listing 13.1 contains a main() function. The rest of the listings will be linked with
RECOFREC.C to create a single executable program. Because of this, they won't
contain mainQ functions. RECOFREC.C also contains several functions that will be
used in the other listings presented today.

Listing 13.2 contains the header file called RECOFREC.H. This header file contains
the prototypes for the functions in Listing 13.1, RECOFREC.C. Listing 13.3
contains RECORDS.H. This file contains the structures that will be used in the
Record of Records! application.

Note: Today’s listings are very long; however, they should be easy to
follow. The analyses following each listing describes them. Now may be a
good time to consider using the diskette that accompanies this book.

Type

Listing 13.1. RECOFREC.C. A temporary Record of

Records! menu.

O©CoO~NOUDAWNEPRE

/*
* Filename: RECofREC.c
* RECORD OF RECORDS - Version 1.0

*

* Author: Bradley L. Jones
* Gregory L. Guntle

*

* Purpose: Allow entry and edit of medium codes.
*

* Note: Assumes 80 columns by 25 columns for screen.
* */
#include <stdio.h>
#include <conio.h> /* not an ANSI header, used for getch()
#include <string.h> /* for strlen() */
#include <ctype.h>
#include “tyac.h”
#include “records.h”
/* ____________________ *
* prototypes *
A e e */
#include “recofrec.h”
int do_main_menu(void);
void initialize_color_table(void);
/* __________________________ *
* define global variables *
A */
struct color_table ct; /* color table */
/*
* main()
* */
main()
{
int rv = 0;
initialize_color_table();
while(rv 1= 4) /* loop in temp menu */
{
rv = do_main_menu(Q);
continues

391

The User Interface: Screen Design

Listing 13.1. continued

47: switch(rv)

48: {

49: case “1’: /* Menu option 1 */

50: // do_albums_screen();

51: break;

52:

53: case “2’: /* Menu option 2 */

54: // do_medium_screen();

55: break;

56:

57: case “3’: /* Menu option 3 */

58: // do_groups_screen();

59: break;

60:

61: case “q’: /* exit */

62: case “Q7: rv = 4;

63: break;

64:

65: defaul t: /* continue looping */

66: boop();

67: break;

68: }

69: }

70:

71: /* clean up screen for exit */

72: clear_screen(BRIGHTWHITE, BLACK);

73: cursor(0,0);

74: repeat_char(* “, 80, YELLOW, BLUE);

75: write_string(“Thank you for using RECORD OF RECORDS!”,

76: YELLOW, BLUE, 0, 21);

77: return O;

78: }

79:

80: /*—————— *

81: * do_main_menu *

82: e */

83: int do_main_menu(void)

84: {

85: int rv;

86:

87: draw_borders(*“ RECORD of RECORDS! *);

88:

89: grid(11, 16, 19, 59, ct.shdw_fcol, ct.bg_bcol, 3);

90: box(10, 15, 20, 60, SINGLE_BOX, FILL_BOX, ct._help_fcol,
ct_help_bcol);

91:

92: write_string(“1 - Enter Musical Items”, YELLOW, GREEN, 11, 23);

93: write_string(“2 - Enter Medium Codes”, YELLOW, GREEN, 12, 23);

94: write_string(“3 - Enter Group Information”, YELLOW, GREEN, 13, 23

);
392

95: write_string(“Q - Quit”, YELLOW, GREEN, 14, 23);

96:

97: cursor(24,79);

98: rv = getch(Q);

99:

100: return(rv);

101: }

102:

103: /* e - *
104: * draw_borders(Q) *
105: @ Fe e */
106: void draw_borders(char *title)

107: {

108: int col=0; /* used to center title */

109:

110: clear_screen(ct.bg_fcol, ct.bg_bcol);

111:

112: col = ((80 - strlen(title)) /7 2);

113:

114: write_string(title, ct.ttl_fcol, ct.ttl_bcol, 0, col);
115:

116: cursor(1,0);

117: repeat_char(* “, 80, ct.abar_fcol, ct.abar_bcol);
118: cursor(24,0);

119: repeat_char(“ “, 80, ct.abar_fcol, ct.abar_bcol);
120: }

121:

122: /* *
123: * display_msg_box() *
124 @ Femmme - */
125: void display_msg_box(char *msg, int fcol, int bcol)

126: {

127: char *scrn_buffer = NULL;

128: scrn_buffer = save_screen_area(11, 15, 19, 60);

129:

130: grid(12, 15, 19, 59, ct.shdw_fcol, ct.bg bcol, 3);
131: box(11, 14, 20, 60, SINGLE_BOX, FILL_BOX, fcol, bcol);
132:

133: write_string(msg, fcol, bcol, 12, 23);

134: write_string(“Press any key to continue...”,

135: fcol, bcol, 13, 23);

136:

137: cursor(24, 79);

138: getch(Q);

139:

140: restore_screen_area(scrn_buffer);

141: }

142:

143: /* *

continues

393

394

The User Interface: Screen Design

Listing 13.1. continued

144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:

*

yes_no_box()

char yes_no_box(char *msg, int fcol, int bcol)

{

N w

*

FoX X % % ok ok F

char ch;
char *scrn_buffer = NULL;
scrn_buffer = save_screen_area(11, 15, 19, 60);

grid(12, 15, 19, 59, ct.shdw_fcol, ct.bg_bcol, 3);
box(11, 14, 20, 60, SINGLE_BOX, FILL_BOX, fcol, bcol)

write_string(msg, fcol, bcol, 12, 23);

write_string(“Enter (Y) or (N)”, fcol, bcol, 13, 23
ch = getch(Q);
ch = toupper(ch);

cursor(24, 79);
while(ch = “Y” && ch = “N”)
{

}

ch = toupper(getch());

restore_screen_area(scrn_buffer);
return(ch);

Function: zero_fill_field();

Purpose: Right justifies a character array and then
pads the left side with zeros. (Assumes
that the field is NOT null terminated.)

Returns: # of zeros used to pad field
-1 if field too large (longer than 20)

0 1if field is blank (not padded)

int zero_fill_field(char *field, int size)

{

int ctr,
pads = 0;

char tmp[20];

if(size > 20)
{

}

else
if(strlen(field) == 0)

pads = -1; /* field too long */

)

*

*
*
*
*
*

194: {

195: pads = O; /* leave blank fields blank. */

196: }

197: else

198: {

199: pads = size - (strlen(field)); /* How many 0s? */
200:

201: for(ctr = 0; ctr < pads; ctr++) /* pad tmp field */
202: tmp[ctr] = “07;

203:

204: /* copy original info to end of tmp field */
205: strncpy(tmp+pads, field, strien(field));

206: /* replace original field with padded tmp */
207: strncpy(field, tmp, size);

208: }

209:

210: return(pads);

211: }

212:

213 /F *
214: * initialize_color_table(Q) *
215: * *
216: * Set up global color table for rest of application *
217: e ————— */
218:

219: void initialize_color_table(void)

220: {

221: ct_bg_fcol = YELLOW;

222: ct.bg_bcol = BLUE;

223:

224: ct.fld_prmpt_fcol = CYAN;

225: ct.fld_prmpt_bcol = BLUE;

226:

227: ct_fld_fcol = BRIGHTWHITE;

228: ct.fld_bcol = BLUE;

229:

230: ct_fld_high_fcol = YELLOW;

231: ct.fld_high_bcol = BLUE;

232:

233: ct.ttl_fcol = BRIGHTWHITE;

234: ct.ttl_bcol = BLACK;

235:

236: ct.abar_fcol = BLACK;

237: ct.abar_bcol = WHITE;

238:

239: ct.err_fcol = YELLOW;

240: ct.err_bcol = RED;

241:

242: ct.db_fcol = WHITE;

243: ct.db_bcol = BROWN;

continues

395

The User Interface: Screen Design

Listing 13.1. continued

244:

245: ct_help_fcol = YELLOW;

246: ct.help_bcol = GREEN;

247:

248: ct_.shdw_fcol = BLACK;

249: }

250:

251: /* *
252: * end of listing *
253: * */

Note: Lines 50, 54, and 58 have been commented out. These lines should
be uncommented when the listings presented later in this chapter have
been included. You’ll be told when each line should be uncommented.

Listing 13.2. RECOFREC.H. The Record of Records!
program header.

'~<I
=
D

1: /*

2: * Filename: RECofREC.H

3: *

4: * Author: Bradley L. Jones & Gregory L. Guntle

5: *

6: * Purpose: Header file for RECORD of RECORDS! application
7: * This contains the function prototypes needed

8: * by more than one source file.

9: * */
10:

11: #ifndef __ RECOFREC_H
12: #define __RECOFREC_H

13:

14: /* = *
15: * Prototypes from recofrec.c *
16: e */
17:

18: void draw_borders(char *);

19:

20: int do_medium_screen(void);

21: int do_albums_screen(void);

22: int do_groups_screen(void);

23: void display_msg_box(char *, int, int);
24: char yes_no_box(char *, int, int);

396

25:
26:
27:
28:
29:
30:

int zero_fill_field(char *,

#endif

/*

*

*

end of header

*/

Listing 13.3. RECORDS.H. The Record of Records!

’7 program header containing the structures for the
ﬂpe record layouts.
1: /*
2: * Filename: RECORDS.H
3: *
4: * Author: Bradley L. Jones & Gregory L. Guntle
5: *
6: * Purpose: Header file for RECORD of RECORDS! application
7: * */
8:
9: #ifndef __RECORDS_H
10: #define _ _RECORDS_H
11:
12: /*
13: * File structures definitions*
14: e
15:
16: typedef struct
17: {
18: char year[2];
19: char month[2];
20: char day[2];
21:
22: } DATE;
23:
24: typedef struct
25: {
26: char title[30+1];
27: char group[25+1];
28: char medium_code[2+1];
29: DATE date_purch;
30: char cost[5+1];
31: char value[5+1];
32: int nbr_songs;
33:
34: } ALBUM_REC;
35:
36: typedef struct
37: {
continues

397

398

The User Interface: Screen Design

Listing 13.3. continued

38:
39:
40:
41:
42:
43:
44:
45:
46:
A47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:

char
char
char

3 SONG_

typedef
{
char
char

3 MEDIU

typedef
{
char
DATE
char
char
char

3 GROUP_

{

title[40+1];

minutes[2+1];

seconds[2+1];
REC;

struct

code[2+1];
desc[35+1];

M_REC;

struct
group[25+1];
date_formed;
music_type[20+1];
member[6][30+1] ;
info[3][60+1];
REC;

color_table

bg_Tfcol;
bg_bcol;

fld_prmpt_fcol;
fld_prmpt_bcol;

fld_fcol;
fld_bcol;

fld_high_fcol;
fld_high_fcol;

ttl_fcol;
ttl_bcol;

abar_fcol;
abar_bcol;

err_Tfcol;
err_bcol;

/*

/*

/*

/*

/*

background */

field prompt */

input field */

highlight character */

screen title */

action bar & bottom */

error */

87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:

int db_fcol; /* dialog box & msg box */
int db_bcol;

int help_fcol; /* help box colors */
int help_bcol;

int shdw_fcol; /* shadow color */
};
/* __ *
* extern declarations for global variables *
P */

extern struct color_table ct;

#endif

/* *
* end of header *
* */

O

b

I RECORD of RECORDS? I

1 - Enter Musical Itenms

2 — Enter Medium Codes
3 — Enter Group Information
Q - Quit

13

Listing 13.1 presents a shadowed box on a colorful screen with a simple menu.
This can be seen in the output previously presented. In addition to this menu,
there are several functions that will be used by the rest of the application. On

Day 14, this menu will be replaced with a full functioning menu.

In lines 13 to 23, several header files are included. All of these header files, except for
CONIO.H, are ANSI-compatible. While CONIO.H is not defined by the ANSI
standards, it should not limit the portability of the program. Lines 17, 18, and 23
include header files that you have created. The TYAC.H header file is used with your
TYAC.LIB library, which needs to be linked with these listings. Line 18 contains the
header file that is in Listing 13.3. The RECOFREC.H header file is in Listing 13.2.

399

400

The User Interface: Screen Design

The RECOFREC.H header file is a small listing. It contains function prototypes for
the functions that are used in more than one of the source files in the Record of Records!
application. You will see this file included in each of the screen files presented later
today.

Expert Tip: Many programmers consolidate prototypes for all the
functions in an application into a single header file. This consolidated

A header file is then included in all of the source files for the given

application.

The RECORDS.H header file, which is included in line 18 of RECOFREC.C, isin
Listing 13.3. This header file contains all of the record structures that are used in the
Record of Records! application. The typedef command has been used to create constant
data types with each of these structures. Later, in the screen source files, these constants
will be used to declare records.

Lines 16 to 22 of RECOFREC.H begin the structure declarations with a date
structure called bATe. This structure will become part of the other structures in the rest
of the listing. Lines 24 to 34 contain the ALBum_REC structure. This is the structure that
will be used with the Musical Items screen. If you review the specification from Day
12, you’ll see that the information presented in the data matrix matches the members
in the structure. The sonc_rec structure follows the aLBum_REC structure. This
structure will be used to hold each song title on the Musical Items screen. This will
be used in conjunction with the ALBuM_REC Structure.

Lines 44 to 49 contain the Mepium_REC structure. This is a much simpler structure to
follow because it contains only two items. This structure is used in the first screen
presented. Lines 51 to 59 contain the crour_Rrec structure, which is used to hold and
save the group information.

The final structure in this header is the color_table structure. Because only a single
color table will be created, there is no reason to create a type defined constant. Instead,
acolor tablestructure is declared in line 32 of the RECOFREC.C source file. Looking
down the color table, you can see that there are variables defined for each of the
different type of colors that could be used in your application (lines 67 to 94). Asyou
review the source code presented over the next few days, you’ll see that these structure
membersare used instead of the color constants presented in the TYAC.H header file.

A color_table structure is actually declared and initialized in RECOFREC.C
(Listing 13.1). This structure is declared in line 32 as ct. This structure is then filled

with values when the initialize_color_table() function (lines 213 to 249) is called
inline 42 of main(). This function is simple to follow. Each member of the color table
that will be used in the application is initialized to an appropriate value. Because this
function is called at the beginning of the application and because the color table, ct,
is declared global, the color table can be used by the entire application.

The mainQ function in RECOFREC.C is easy to follow. Awhite loop in lines 44 to
69 puts the program into a loop that displays a menu and then waits for the user to
enter a menu option of 1, 2, 3, or Q. The program continues to loop until the letter
Q is entered. Once the user enters Q, the program performs some cleanup, displays
a message, and then exits. While the program is looping, only three other values are
valid, 1, 2, and 3. If the user enters any value other than these, the boop () function
will cause the program to beep (line 66). If 1, 2, or 3 is called, then the function for
the appropriate entry and edit screen is called. Each of these functions is presented in
listings later today. Until you create these listings, you should leave these functions
commented out.

Aswasstated, the main menu isdisplayed withafunctioncallin line 46, do_main_menuQ.
This function is declared in lines 80 to 101. As you will see, this function doesn’t
presentany features that you haven'talready seen on earlier days. Thewrite_string(),
gridQ, and box(functions should all be familiar now. The draw_bordersQ
function, which is called in line 87, is defined in lines 103 to 120. This function is
broken out from the do_main_menu() because the screen entry and edit applications
will also use it. Again, the functions shouldn’t present anything new.

You should note that in the do_main_menu() and the draw_borders () functions, color
constants aren’t used. Instead, the ct structure members are used. While this may
seem a little cryptic at first, you'll find that using a structure like this will make your
program more functional in the long run.

This leaves three final functions in RECOFREC.C. These are display_msg_box(),
yes_no_box(), and zero_fill_field(). They are application-specific functions that
are used in multiple source files. Because they are used in multiple places, they have
been declared in the RECOFREC.C listing along with the main() function. Each of
these has its own purpose. The display_msg_box() function displays a one line
message on the screen in a shadowed box. It also displays a “Press any key to
continue...” message before waiting for a key to be pressed by the user. You'll see this
function used throughout the application. The yes_no_box() functionin lines 143 to
165 is nearly identical to the display_msg_box(). It also displays a message; however,
instead of waiting for any key to be pressed, it waits for aY oran N to be pressed. This
value, Y or N, is then passed back to the calling program. The final function,
zero_fill_field(), mayseemalittle confusing. Thisfunction padsa field with zeros.

401

402

The User Interface: Screen Design

It pads the zeros on the left. For example, if a date of 1/1/94 were to be entered, you
would use this function to add zeros to the day and month, thus making the date
01/01/94. Thisfunction containsa limitation in that it cannot pad afield that s larger
than 20 characters in size. This limitation can be changed by modifying line 189. If
the size is increased, the temporary character array, tmp, would also need to be
increased in size (line 186). The comments in the listing should help you understand
the rest of this function.

Overview of Creating Entry and Edit Screens

Now that you have a temporary menu and a table full of colors, you are ready to create
your first full-fledged entry and edit screen. The next three listings contain each of the
three entry and edit screens for the Record of Records! application. Each of these three
listings is presented in the same format. In fact, the Medium Codes screen’s code was
used as a template to create the other two listings. You’ll find that this listing makes
a good template for creating your own entry and edit screens.

Figure 13.7 presents a pseudo-flow chart of the flow used by an entry and edit screen.
This is a simplistic representation of what will occur in the entry and edit screen;
however, it should help you understand the overall flow.

Start l
| [Sewgum |
l ‘ initialize the screen position |
Draw the screen
[Draw screen characteristics)
[Draw field prompts] ‘ get the field at the provided position ‘
[Draw fields/Data) J.
l ‘ evalutate the return key from the field ‘
G Get Data l
l Execute key funclion ‘
Exit l

Figure 13.7. The flow of an entry and edit screen.

The analysis of the medium screen will follow the same order as in this figure.

The Medium Code
Entry and Edit Screen

The medium screen is used to capture the medium code and a description of what the
code represents. For example, the code “CD” could be used to represent a compact
disc. On alater day, you’ll use the medium codes entered in this screen to validate the
medium codes entered on the Musical Items screen.

The Code Behind the Medium Screen

Most of the code for the medium screen is presented all at once in Listing 13.4. This
will help you more easily understand the code. The analysis for this listing will be
covered in the next few sections. This listing should be compiled along with Listing
13.1, RECOFREC.C. In addition, it will need to be linked with your TYAC.LIB
library.

Note: Don't forget to uncomment line 54 of RECOFREC.C (Listing
13.1).

Type Listing 13.4. MEDIUMS.C. The medium screen.

1: /*

2: * Filename: medium.c

3: *

4: * Author: Bradley L. Jones

5: * Gregory L. Guntle

6: *

7: * Purpose: Allow entry and edit of medium codes.
8: *

9: * Note: This listing is linked with RECofREC.c
10: * (There isn’t a main() in this listing!)
11: * */
12:

13: #include <stdio.h>

14: #include <string.h>

15: #include <conio.h> /* for getch() */
16: #include “tyac.h”

17: #include “records.h”

18:

19:) i *
20 * prototypes *
217 Ao ny

continues

403

The User Interface: Screen Design

Listing 13.4. continued

22: #include “recofrec.h”

23:

24: void draw_medium_screen(void);
25: void draw_medium_prompts(void);
26: void display_medium_fields(void);
27:

28: int clear_medium_fields(void);

29: int get_medium_data(int row);
30: int get_medium_input_data(void);
31: void display_medium_help(void);

32: int add_medium_data(void);

33:

34: [r— *

35: * Defined constants *

36: K e - */

37:

38: #define MEDIUM_DBF “MEDIUMS .DBF”’
39:

40: /Fmmm e *
41: * structure declarations *
42: e */
43:

44: MEDIUM_REC medium;
45: MEDIUM_REC *p_medium = &medium;

46:

47: /* *
48: * do_medium_screen() *
49: * */
50:

51: int do_medium_screen(void)

52: {

53: clear_medium_fields(Q);

54: draw_medium_screen();

55: get_medium_input_data();

56: return O;

57: %}

58:

59: /*—— *

60: * draw_medium_screen() *

61: e */

62:

63: void draw_medium_screen(void)

64: {

65: draw_borders(* MEDIUM “); /* draw screen bckgrnd */
66:

67: write_string(“<Fl=Help> <F3=Exit> <F4=Save>",

68: ct.abar_fcol, ct.abar_bcol, 24, 3);

69:

70: draw_medium_prompts(Q);

71: display_medium_fields(Q);

404

72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:

void draw_medium_prompts(void)
{
write_string(“Medium Code:™,
ct_fld_prmpt_fcol, ct.fld_prmpt_bcol, 4, 3);
write_string(“Medium Description:”,
ct.fld_prmpt_fcol, ct.fld_prmpt_bcol, 6, 3);

void display_medium_fields(void)

{
write_string(“__", ct.fld_fcol, ct.fld_bcol, 4, 17);
write_string(*___ 7,
ct.fld_fcol, ct.fld_bcol, 6, 24);
/* display data, if exists */
write_string(medium.code, ct.fld_fcol, ct.fld _bcol, 4, 17);
write_string(medium.desc, ct.fld_fcol, ct.fld_bcol, 6, 24);
}
/* __ *
* get_medium_input_data() *
., */
int get_medium_input_data(void)
{
int position,
rv,
loop = TRUE;

/* Set up exit keys. */

static char fexit keys[13] = { F1, F3, F4, ESC_KEY,
PAGE_DN, PAGE_UP, CR_KEY,
TAB_KEY, ENTER_KEY, SHIFT_TAB,
DN_ARROW, UP_ARROW, NULL };

static char *exit_keys = fexit_keys;
getline(SET_EXIT_KEYS, 0, 12, 0, 0, O, exit_keys);

/*** setup colors and default keys ***/
getline(SET_DEFAULTS, 0, 0, O, 0, O, 0);

continues

405

406

The User Interface: Screen Design

Listing 13.4. continued

122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:

143:
144:
145:
146:
147:

148:
149:
150:
151:
152:
153:

154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:

165:
166:

getline(SET_NORMAL, O, ct.fld_fcol, ct.fld_bcol,
ct.fld_high_fcol, ct.fld_high_bcol, 0);

getline(SET_UNDERLINE, O, ct.fld_fcol, ct.fld_bcol,
ct.fld_high_fcol, ct.fld_high_bcol, 0);

getline(SET_INS, 0, ct.abar_fcol, ct.abar_bcol, 24, 76, 0);

position = 0;

while(loop == TRUE) /** get data for top fields **/
{
switch((rv = get_medium_data(position)))
{
case CR_KEY
case TAB_KEY
case ENTER_KEY :
case DN_ARROW : /* go down a field */
(position == 1) ? (position =0) :
position++;
break;

case SHIFT_TAB :
case UP_ARROW : /* go up a field */
(position == 0) ? (position =1) :
position--;
break;

case ESC_KEY :
case F3 : /* exit back to main menu */
if((yesno box(“Do you want to exit?”,
ct.db_fcol, ct.db_bcol)) ==°Y?)

{
loop = FALSE;
b
break;
case F4 : /* add data */

if(strlen(medium.code) == 0)
{
display_msg_box(“Must enter a medium
code”,
ct.err_fcol, ct.err_bcol);

167: i

168: else

169: if(strlen(medium.desc) == 0)

170: {

171: display_msg_box(*“Must enter a"
"description”,

172: ct.err_fcol, ct.err_bcol);

173: 3}

174: else /* all okay, so add data */

175: {

176: add_medium_data();

177:

178: clear_medium_fields(Q);

179: draw_medium_screen();

180: position = 0;

181: 3

182:

183: break;

184:

185: case PAGE_DN : /* go to last data entry field */

186: position = 1;

187: break;

188:

189: case PAGE_UP : /* go to first data entry field */

190: position = 0O;

191: break;

192:

193: case F1: /* help */

194: display_medium_help(Q);

195: draw_medium_screen();

196: break;

197:

198: default: /* error */

199: display_msg_box(“ Error “,

200: ct.err_fcol, ct.err_bcol);

201: break;

202:

203: } /* end of switch */

204: } /* end of while */

205:

206: return(rv);

207: }

208:

209 /F *

210: * get_medium_data() *

210 e */

212:

213: int get_medium _data(int row)

214: {

215: int rv;

continues

407

The User Interface: Screen Design

Listing 13.4. continued

216:

217: switch(row)

218: {

219: case O :

220: rv = getline(GET_ALPHA, 0, 4, 17, 0, 2, medium.code);
221: break;

222: case 1 :

223: rv = getline(GET_ALPHA, 0, 6, 24, 0, 35, medium.desc);
224: break;

225: }

226: return(rv);

227: }

228:

229 /e *
230: * clear_medium_fields(Q *
231: *em */
232:

233: int clear_medium_fields(void)

234: {

235: getline(CLEAR_FIELD, 0, 3, 0, 0, O, medium.code);
236: getline(CLEAR_FIELD, 0, 36, 0, 0, O, medium.desc);
237:

238: return(0);

239: }

240:

241 /e *
242: * display_medium_help(Q) *
243 Fomm */
244:

245: void display_medium_help(void)

246: {

247: grid(11, 16, 19, 59, ct.shdw_fcol, ct.bg _bcol, 3);
248: box(10, 15, 20, 60, SINGLE_BOX, FILL_BOX,

249: ct.help_fcol, ct.help_bcol);

250:

251: write_string(“This is a screen for entering medium”,
252: ct_help_fcol, ct.help_bcol, 11, 22);
253: write_string(“codes and their descriptions. To exit”,
254: ct._help_fcol, ct_help_bcol, 12, 22);
255:

256: write_string(“this screen, press <F3> or <ESC>.”,
257: ct.help_fcol, ct_help_bcol, 13, 22);

258: write_string(“Press any key to continue...”,

259: ct_help_fcol, ct.help_bcol, 14, 22);
260:

261: cursor(24, 79);
262: getch(Q;

263: }

264:

408

*
266: * add_medium_data(); *
267: * Returns: 1 - if all okay *
268: * 0 - if not all okay *

270:

271: int add_medium_data(void)

272: {

273: int rv = 0;

274: FILE *fp;

275:

276: if((fp = fopen(MEDIUM_DBF, “a”)) == NULL)

277: {

278: display_msg_box(“Error opening file...”,

279: ct.err_fcol, ct.err_bcol);

280: }

281: else

282: {

283: if(C (fwrite(p_medium, sizeof(medium), 1, fp)) == 0)
284: {

285: display_msg_box(“Error writing data...”,

286: ct.err_fcol, ct.err_bcol);

287: 3}

288: else

289: {

290: display_msg_box(“Record added”, ct.db_fcol, ct.db_bcol);
291: rv = 1;

292: }

293:

294: fclose(fp);

295: }

296: return(rv);

297: }

298: /* *
299: * end of listing *
300: * */

Mediun Description:

<Fi=Help> <F3=Exit> <{F5=Save>

409

410

The User Interface: Screen Design

Ana|yS|S Thisisalong listing; however, the results are worth all the code. Throughout this

listing, you can see many of the functions that you created in the previous
chapters. One thing you won't find is a main¢) function. This is because the
medium screen will be called by the menu presented in Listing 13.1, RECOFREC.C.

The do_medium_screen() Function

Thedo_medium_screen() functioniscalled from line 54 of the RECOFREC.C source
file. This function calls three other functions and then returns back to the menu.
These three functions follow the flow presented in Figure 13.5. First a function is
called to clear the fields, then the screen is drawn, and finally the data is retrieved.

Before MEDIUM.C begins the do_medium_screen() function, several things occur.
In lines 13 to 17, various header files are included. In lines 22 through 32, function
prototypes are declared. The RECOFREC.H header file is then included.
RECOFREC.H is included in the prototype section because it contains mostly
prototypes. Line 38 contains a defined constant, mebium_par. This contains the name
of the disk file that will be used to store the medium file. By using a defined constant,
it will be easy for you to change the name of the database file. Lines 44 and 45 declare
a MEDIUM_REC structure called medium and a pointer to the structure called p_medium.
This structure is declared globally so that it is easy to use.

Clearing the Structure Fields

Line 53 in do_medium_screen() calls the function clear_medium_fields(), which
clears the fields in the structure declared in line 44. The clear_medium_fields()
function in lines 229 to 239 uses getl ine() to clear each structure member to Nulls.
In the case of the medium structure, this is the code and the desc fields. By clearing the
fields in this manner, you can be assured that they do not contain any erroneous data.

Setting Up the Screen

The next step presented in Figure 13.5 was drawing or setting up the screen. The
do_medium_screen() Calls the draw _medium_screen() function in line 54. The
draw_medium_screen() function is declared in lines 59 to 72. Line 65 of this function
callsthe draw_borders () function that was defined in RECOFREC.C (Listing 13.1).
The keys that are valid for special functions are then written on the bottom line of the
screen (line 67). The next line, line 70, then calls the draw_medium_prompts(), which
is presented in lines 74 to 84. This function draws each of the field prompts on the
screen.

Line 71 of draw_medium_screen() calls the display_medium_fields() function. This
function is important. It draws underlines on the screen in the locations where

getline() Will retrieve data. If you leave this function out, getline() will draw the
underlines one field at a time. It looks better to draw all the underlines on the screen
up front. The second half of display_medium_fields() Writes the actual field values
on top of the underscores. Although they will be blank the first time into the screen,
later functionality may require that the data be displayed too. Once the underlinesand
data have been drawn, the screen is complete and data entry is ready to begin.

Capturing the Data

Capturing the data takes up most of the listing. This capturing of the data starts when
the do_medium_screenQ function calls the get_medium_input_data(Q in line 55. The
get_medium_input_data() function is presented in lines 102 to 207. This function
starts by setting up the getline() function. Line 112 sets up the exit keys. As you can
see, several exit keys are being set up. If you review the specification on Day 12, you
will find that not all of the exit keys have been declared. The rest of the keys will be
declared as they are needed on later days. Line 117 sets up a static character array
pointing to the exit keys. Line 118 then sets up the exit keys. Lines 121 to 126 use the
getline() function to set up the default colors. You should notice that the color table
values are being used. These color table values were set up in the RECOFREC.C
listing.

Tip: If the getrine() commands seem unfamiliar, you should review
\ Day 10.

A3

Once set up, the screen position is initialized to 0 in line 132. The first field on the
screen is given position 0. Each field on the screen should then be given a sequential
number following this one. The order in which the fields will be retrieved is based on
their respective position numbers. For the Medium Codes screen, the Medium Codes
field is considered position 0 and the description field is considered position 1.

Line 134 begins the loop for getting the data. This loop continues until a key action
causes the looping flag, 10op, to be chained to FaLsE. For each iteration of the loop,
asingle data item is retrieved. This is done in line 136 using the get_medium_data()
function. The current position is passed to the get_medium_data() function so that
it knows which field on the screen to retrieve.

Onceafield isretrieved, the key returned is evaluated within a swi tch statement. This
return value will be one of the exit keys set up in line 112. Looking at lines 138 to 201,
you can see what each exit key does. If the cr_key (carriage-return key), TAB_key (tab
key), ENTER_KEY (enter key), or pn_ARrRow (down arrow key) is pressed, then the

411

412

The User Interface: Screen Design

position is incremented so that the next field is retrieved. If the field is the last field
on the screen (in this case, field number 1), then the position is reset to the first field,
0. The sHiFT_TAB (shift+tab) and the ur_arrow (up arrow key) do just the opposite.
They decrement the position. If the position is the first position on the screen, then
the position is reset to the last position on the screen, 1.

The esc_key and the F3 keys function in the same manner. This functionality is
presented in lines 151 to 158. Both keys offer the user a way of leaving the entry and
edit screen. This follows the standards mentioned previously. The yes_no_box()
function provided in the RECOFREC.C listing is used to ask the user if he is sure he
wishes to exit. If he is not, then the program returns control to the entry screen and
the user is left on the field he was previously on. If the user is sure, then 1oop is set to
FALSE s0 that it will end.

The F4 key, lines 160 to 183, is used to add data. Before adding the data, edits may
be performed. In this case, the user cannot add the data until he has entered a medium
code (lines 162 to 167). If a medium code has not been entered, then a message is
displayed explaining the situation to the user. If the code is okay, then the
add_medium_data() function is called. This function, presented in lines 265 to 297
opens a file, writes the structure, displays a message, and returns. Line 178 then clears
the structure fields and redraws the medium screen. This effectively clears the data
entry screen for the next record. The position is then reset to 0 and the program
resumes accepting data. On Day 15, the add_medium_data() function will be replaced
as better file handling capabilities are added to the application.

The pace_DN and PAGE_up Keys operate in similar ways. PAGE_DN puts the cursor on the
last field on the entry screen by changing the value of the position. This is done in line
186 by setting the position to 1. Pace_up sets the position to the first field on the screen.
This will invariably be the value of 0.

Note: There are times when you don’t want to set the page down and
page up values to the first or last field. This will be seen in the group
screen presented later today.

The last key worked with is the F1 key. This key has been defined as the help key. Line
194 calls a function called draw_medium_screen(), which is presented in lines 241 to
263. Thisfunction creates a box that contains a little bit of help information. On Day
16, you'll see how to create context-sensitive help in your application.

Thedefaultcaseinlines 198 to 201 isasafety feature. The getine() function should
only return those values set up in the exit keys; however, it's always a good
programming tactic to include a default case in all of your switch calls. This can help
catch potential problems.

Getting Individual Data Fields

The get_medium_input_data() function called the get_medium_data() function in
line 136. In doing so, the position of the field that should be retrieved is passed. The
get_medium_data() function is defined in lines 209 to 227. This function is basically
a single switch statement that has a case for each field on the screen. Each case has a
call to getline() that gets the individual field. The return value from getline() is
captured in rv and then returned back to the get_medium_input_data() function.
This returned value will only be one of the valid exit keys that were set up for
getline().

Note: Edits on fields can be incorporated in this area of the program. If

you want an edit on a field as it is being entered, it could be placed right
after the call to gettine(). In the analysis for the group screen, you will

see an example of this.

Tip: Review the Medium Codes screen before trying to understand
\ the Group Screen’s code. Each of these screens is progressively harder
4 than the previous.

Everything Else

This is everything in the medium screen! As you should have noticed, this doesn’t
contain all the features that were mentioned in the specification. In addition, it doesn’t
have very good file control. Each record is written to a file; however, they can never
be accessed. Over the next few days, these holes in the medium screen’s functionality
will be filled so that your application is complete.

413

414

The User Interface: Screen Design

The Group Information Screen

The Group screen is presented in Listing 13.5. As you will see, this listing is a little
more complex than the Medium Codes screen. Some of the differences are caused by
the additional number of fields in the group structure; however, there are a few other
differences. Following is Listing 13.5, which contains the code for the Group

Information screen.

\:%fj
g
D

Note: This listing should be compiled and linked along with Listing 13.1

(RECOFREC.C), Listing 13.4 (MEDIUM.C), and your TYAC.LIB

library. You should uncomment line 58 in Listing 13.1 before compiling

and linking.

(!JMY | Listing 13.5. The Group Information screen.
1: /*
2: * Filename: groups.c
3: *
4: * Author: Bradley L. Jones
5: *
6: *
7: * Purpose: Allow entry and edit of group information.
8: *
9: * Note: This listing is linked with RECofREC.c
10: * (There isn’t a main() in this listing!)
11: * */
12:
13: #include <stdio.h>
14: #include <string.h>
15: #include <conio.h> /* for getch() */
16: #include “tyac.h”
17: #include “records.h”
18:
19: /*————
20: * prototypes *
21: K e e */
22: #include “recofrec.h”
23:
24: void draw_groups_screen(void);
25: void draw_groups_prompts(void);
26: void display_groups_fields(void);
27:
28: int clear_groups_fields(void);
29: int get_groups_data(int row);

30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
A47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:

int get_groups_input_data(void);
void display_groups_help(void);
int add_groups_data(void);

/* __________________ *
* Defined constants*
e */

#define GROUPS_DBF “GROUPS.DBF”

/* ________________________ *
* structure declarations *
K */

GROUP_REC groups;
GROUP_REC *p_groups = &groups;

/* *
* do_groups_screen() *
* */

int do_groups_screen(void)

{
clear_groups_fields(Q);
draw_groups_screen();
get_groups_input_data();
return O;

3

/* ________________________ *

* draw_groups_screen() *

void draw_groups_screen(void)

{
draw_borders(“ Groups “); /* draw screen bckgrnd */
write_string(“<Fl=Help> <F3=Exit> <F4=Save>",
ct.abar_fcol, ct.abar_bcol, 24, 3);
draw_groups_prompts(Q);
display_groups_fields(Q);
3
/* ________________________ *
* draw_groups_prompts(Q)*
A e e */

void draw_groups_prompts(void)

continues

415

416

The User Interface: Screen Design

Listing 13.5. continued

80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:

write_string(“Group:”,

ct.fld_prmpt_fcol, ct.fld_prmpt_bcol, 4, 3);

write_string(“Date Formed: / 7/

ct.fld_prmpt_fcol, ct.fld_prmpt_bcol, 6, 3);

write_string(“Type of Music:”,

ct_fld_prmpt_fcol, ct.fld_prmpt_bcol, 8, 3);

write_string(“Members:”,

ct.fld_prmpt_fcol, ct.fld_prmpt_bcol, 10, 3);

write_string(“Description:”,

ct.fld_prmpt_fcol, ct.fld_prmpt_bcol, 16, 3);

¥

/* ________________________ *
* draw_groups_fields() *
K e e e e */

void display_groups_fields(void)
{

char tmp[3] = { 0, 0, O }; /* initialize to null values */

char under_30[31] = {“

write_string(under_30+5, /* 25 underlines */
ct.fld_fcol, ct.fld_bcol, 4, 17);

write_string(*“__", ct.fld_fcol, ct.fld_bcol, 6, 17);
write_string(“__", ct.fld_fcol, ct.fld_bcol, 6, 20);
write_string(“__", ct_fld_fcol, ct.fld_bcol, 6, 23);

write_string(under_30+10, /* 20 underlines */
ct.fld_fcol, ct.fld_bcol, 8, 19);

write_string(under_30, ct.fld_fcol,
write_string(under_30, ct.fld_fcol,
write_string(under_30, ct.fld_fcol,
write_string(under_30, ct.fld_fcol,
write_string(under_30, ct.fld_fcol,
write_string(under_30, ct.fld_fcol,
/* write the groups.info underlines
write_string(under_30, ct.fld_fcol,
write_string(under_30, ct.fld_fcol,
write_string(under_30, ct.fld_fcol,
write_string(under_30, ct.fld_fcol,
write_string(under_30, ct.fld_fcol,
write_string(under_30, ct.fld_fcol,

/* display data, if exists */

write_string(groups.group,

ct.
ct.
ct.
ct.
ct.
_fld_bcol, 14, 42

ct
in

ct.
ct.
ct.
ct.
ct.
ct.

©

v\ S\ N\ o\ N\

fld_bcol, 12,
fld_bcol, 12, 42
fld_bcol, 13, 9
fld_bcol, 13, 42
fld_bcol, 14, 9

two parts */

fld_bcol, 18, 10
fld_bcol, 18, 40
fld_bcol, 19, 10
fld_bcol, 19, 40
fld_bcol, 20, 10
fld_bcol, 20, 40

ct.fld_fcol, ct.fld_bcol, 4, 17);

write_string(groups.music_type,

ct.fld_fcol, ct.fld_bcol, 8, 19);

write_string(groups.member[0],

ct.fld_fcol, ct.fld_bcol, 12, 9);

130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:

167:

168:
169:
170:
171:
172:
173:
174:
175:
176:
177:

write_string(groups.member[1],

ct.fld_fcol, ct.fld_bcol, 12, 42);
write_string(groups.member[2],

ct.fld_fcol, ct_fld_bcol, 13, 9);
write_string(groups.member[3],

ct.fld_fcol, ct.fld_bcol, 13, 42);
write_string(groups.member[4],

ct.fld_fcol, ct.fld_bcol, 14, 9);
write_string(groups.member[5],

ct.fld_fcol, ct_.fld_bcol, 14, 42);
write_string(groups.info[0],

ct.fld_fcol, ct.fld_bcol, 18, 10);
write_string(groups.info[1],

ct.fld_fcol, ct.fld_bcol, 19, 10);
write_string(groups.info[2],

ct.fld_fcol, ct_.fld_bcol, 20, 10);

strncpy(tmp, groups.date_formed.month, 2);
write_string(tmp, ct.fld_fcol, ct.fld _bcol, 6, 17);
strncpy(tmp+4, groups.date_formed.day, 2);
write_string(tmp, ct.fld_fcol, ct.fld_bcol, 6, 20);
strncpy(tmp, groups.date_formed.year, 2);
write_string(tmp, ct.fld_fcol, ct.fld_bcol, 6, 23);

int get_groups_input_data(void)

{

int position,
rv,
okay, /* used with edits */
loop = TRUE;

/* Set up exit keys. */

static char fexit_keys[13] = { F1, F3, F4, ESC_KEY, PAGE_DN,
PAGE_UP, CR_KEY, TAB_KEY,
ENTER_KEY, SHIFT_TAB, DN_ARROW,
UP_ARROW, NULL };

static char *exit_keys = fexit_keys;
getline(SET_EXIT_KEYS, 0, 12, 0, 0, O, exit_keys);

/*** setup colors and default keys ***/

getline(SET_DEFAULTS, 0, 0, 0, 0, 0, 0);

getline(SET_NORMAL, 0, ct.fld_fcol, ct.fld_bcol,
ct.fld_high_fcol, ct.fld_high_bcol, 0);

getline(SET_UNDERLINE, 0, ct.fld_fcol, ct.fld_bcol,
ct_fld_high_fcol, ct.fld_high_bcol, 0);

continues

417

418

The User Interface: Screen Design

Listing 13.5. continued

178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:

getline(SET_INS, 0, ct.abar_fcol, ct.abar_bcol, 24, 76, 0);

position = 0;

while(loop == TRUE) /** get data for top fields **/
{
switch((rv = get_groups_data(position)))
{
case CR_KEY
case TAB_KEY
case ENTER_KEY :
case DN_ARROW : /* go down a Ffield */
(position == 13) ? (position = 0) : position++;
break;
case SHIFT_TAB :
case UP_ARROW : /* go up a field */
(position == 0) ? (position = 13) : position--;
break;
case ESC_KEY :
case F3 /* exit back to main menu */
iT((yes_no_box(“Do you want to exit?”,
ct.db_fcol, ct.db_bcol)) == “Y”)
{
loop = FALSE;
}
break;
case F4 /* add data */
okay = TRUE;
ifT(strlen(groups.group) == 0)
{
display_msg_box(“Must enter a group name”,
ct.err_fcol, ct.err_bcol);
position = 0O;
okay = FALSE;
3
else
{
/* rest of edits. (i.e. edit date) */
3
iT(okay == TRUE)
{

add_groups_data();

clear_groups_fields(Q);

228: draw_groups_screen();

229: position = 0;

230: }

231:

232: break;

233:

234: case PAGE_DN : /* go to last data entry field */
235: position = 11;

236: break;

237:

238: case PAGE_UP : /* go to first data entry field */
239: position = 0;

240: break;

241:

242: case F1: /* help */

243: display_groups_help(Q);

244: draw_groups_screen();

245: break;

246:

247: default: /* error */

248: display_msg_box(“ Error “,

249: ct.err_fcol, ct.err_bcol);

250: break;

251:

252: } /* end of switch */

253: } /* end of while */

254:

255: return(rv);

256: }

257:

2581 /F *
259: * get_groups_data() *
260 Fommmm */
261:

262: int get_groups_data(int row)

263: {

264: int rv;

265: char tmp[3] = { 0, 0, O }; /* initialize to null values */
266:

267: switch(row)

268: {

269: case O :

270: rv = getline(GET_ALPHA, 0, 4, 17, 0, 25, groups.group);
271: break;

272: case 1 :

273: strncpy(tmp, groups.date_formed.month, 2);
274: rv = getline(GET_NUM, o, 6, 17, 0, 2, tmp);
275: zero_Till_field(tmp, 2);

276: write_string(tmp, ct.fld_fcol, ct.fld_bcol, 6, 17);

continues

419

The User Interface: Screen Design

Listing 13.5. continued

277: strncpy(groups.date_formed.month, tmp, 2);

278: break;

279: case 2 :

280: strncpy(tmp, groups.date_formed.day, 2);

281: rv = getline(GET_NUM, 0, 6, 20, 0, 2, tmp);

282: zero_FTill_field(tmp, 2);

283: write_string(tmp, ct.fld_fcol, ct.fld_bcol, 6, 20);

284: strncpy(groups.date_formed.day, tmp, 2);

285: break;

286: case 3 :

287: strncpy(tmp, groups.date_formed.year, 2);

288: rv = getline(GET_NUM, 0, 6, 23, 0, 2, tmp);

289: zero_Till_field(tmp, 2);

290: write_string(tmp, ct.fld_fcol, ct.fld_bcol, 6, 23);

291: strncpy(groups.date_formed.year, tmp, 2);

292: break;

293: case 4 :

294: rv = getline(GET_ALPHA, O, 8, 19, 0, 20,
groups.music_type);

295: break;

296: case 5 :

297: rv = getline(GET_ALPHA, O, 12, 9, 0, 30,
groups.member[0]);

298: break;

299: case 6 :

300: rv = getline(GET_ALPHA, 0, 12, 42, 0, 30,
groups.member[1]);

301: break;

302: case 7 :

303: rv = getline(GET_ALPHA, O, 13, 9, 0, 30,
groups.member[2]);

304: break;

305: case 8 :

306: rv = getline(GET_ALPHA, 0, 13, 42, 0, 30,
groups.member[3]);

307: break;

308: case 9 :

309: rv = getline(GET_ALPHA, O, 14, 9, 0, 30,
groups.member[4]);

310: break;

311: case 10 :

312: rv = getline(GET_ALPHA, O, 14, 42, 0, 30,
groups.member[5]);

313: break;

314: case 11 :

315: rv = getline(GET_ALPHA, O, 18, 10, 0O, 60,
groups.info[0]);

316: break;

317: case 12 :

420

318:

319:
320:
321:

322:
323:
324:
325:
326:
327:
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:
349:
350:
351:
352:
353:
354:
355:
356:
357:
358:
359:
360:
361:
362:
363:
364:
365:

rv = getline(GET_ALPHA, O, 19, 10, O, 60,
groups.info[1l]);
break;
case 13 :
rv = getline(GET_ALPHA, O, 20, 10, O, 60,
groups.info[2]);

break;
3
return(rv);
3
/* __ *
* clear_groups_fields(Q *

int clear_groups_fields(void)

{
getline(CLEAR_FIELD, 0, 26, 0, 0, O, groups.group);
getline(CLEAR_FIELD, 0O, 2, 0, 0, O, groups.date_formed.year);
getline(CLEAR_FIELD, O, 2, 0, 0, O, groups.date_formed.month);
getline(CLEAR_FIELD, 0O, 2, 0, 0, 0, groups.date_formed.day);
getline(CLEAR_FIELD, 0, 21, 0, 0, O, groups.-music_type);
getline(CLEAR_FIELD, 0, 31, 0, 0, O, groups.member[O]);
getline(CLEAR_FIELD, 0, 31, 0, 0, O, groups.member[1]);
getline(CLEAR_FIELD, 0, 31, 0, 0, O, groups.member[2]);
getline(CLEAR_FIELD, 0, 31, 0, 0, O, groups.member[3]);
getline(CLEAR_FIELD, 0, 31, 0, 0, O, groups.member[4]);
getline(CLEAR_FIELD, 0, 31, 0, 0, O, groups.member[5]):
getline(CLEAR_FIELD, 0, 61, 0, 0, O, groups.info[0]);
getline(CLEAR_FIELD, 0, 61, 0, 0, O, groups.info[l]);
getline(CLEAR_FIELD, 0, 61, 0, 0, O, groups.info[2]);
return(0);

3

/* __ *

* display_groups_help(Q *

R e e e e */

void display_groups_help(void)
{
grid(11, 16, 19, 59, ct.shdw_fcol, ct.bg bcol, 3);
box(10, 15, 20, 60, SINGLE_BOX, FILL_BOX,
ct_help_fcol, ct.help_bcol);

write_string(“This is a screen for entering group”,
ct.help_fcol, ct._help_bcol, 11, 22);
write_string(“information and their descriptions.”,
ct_help_fcol, ct.help_bcol, 12, 22);

continues

421

The User Interface: Screen Design

Listing 13.5. continued

366:
367:
368:
369:
370:
371:
372:
373:
374:
375:
376:
377:
378:
379:
380:
381:
382:
383:
384:
385:
386:
387:
388:
389:
390:
391:
392:
393:
394:
395:
396:
397:
398:
399:
400:
401:
402:
403:
404:
405:
406:
407:
408:
409:
410:

write_string(“To exit screen, press <F3> or <ESC>.”,
ct_help_fcol, ct.help_bcol, 13, 22);

write_string(“Press any key to continue...”,
ct_help_fcol, ct.help_bcol, 14, 22);

cursor(24, 79);

getch(Q;
3
/* __ *
* add_groups_data(Q); *
* Returns: 1 - if all okay *
* 0 - if not all okay *
K */
int add_groups_data(void)
{
int rv = 0;
FILE *fp;
if((fp = fopen(GROUPS_DBF, “a”)) == NULL)
{
display_msg_box(“Error opening file...”,
ct.err_fcol, ct.err_bcol);
}
else
{
if((fwrite(p_groups, sizeof(groups), 1, fp)) == 0)
{
display_msg_box(“Error writing data...”,
ct.err_fcol, ct.err_bcol);
3
else
{
display_msg_box(“Record added”, ct.db_fcol, ct.db_bcol);
rv = 1;
}
fclose(fp);
}
return(rv);
¥
/* *
* end of listing *
* */

422

LFi=Help> LF3=Exit> {F5=Save>

Anal ' At first glance, this listing may not seen too different from the MEDIUM.C
)’5 listing (Listing 13.4). The MEDIUM.C listing was actually used as a template

to create this listing. All of the medium-specific information was then changed
to the corresponding group information. Because a detailed analysis was made on the
medium screen, only the major differences need to be covered.

The first change can be seen in line 38. The name of the file being used is more
appropriately named croups.DBF. Lines 44 and 45 declare a group structure and a
pointer using the type-defined constants from the RECORDS.H structure. This
structure and the corresponding pointer are used throughout the rest of the listing to
hold the data being entered by the user.

Several changes have been made insettingup thescreen. Inline 65, thedraw_borders()
function is called using the header for groups. Inthe draw_groups_prompts() function
inlines 74 to0 90, different promptsare displayed. These promptsare more appropriate
for the group’s information. In line 82, a prompt for a date is displayed. Because only
the numeric part of the date will be retrieved, the separators are displayed along with
the prompts.

The function to display the fields, display_groups_fields(), has some subtle
changes also. To conserve on a little bit of storage area, a character array of 30
underlines has been created. This array is used to write several of the field underlines.
Line 101 might be a little confusing at first. This iswriting the field underlines for the
group name. At first glance, the under_30 character array may seem too long. To get
around this, only the last 25 characters are printed. This is accomplished by printing
the character array starting at the sixth position—by adding five to its starting address.
Line 106 prints 20 underlines in the same manner.

An additional difference in display_groups_fields() is the use of the tmp character
array. This is a temporary character array used to display the individual date
members—month, day, year. Because the date fields are stored without null termina-

423

424

The User Interface: Screen Design

tors, they can’t be displayed like the other null terminated character arrays. To get
around this, the date fields are copied into the temporary, tmp, field and then the tmp
field isdisplayed (lines 147 to 152). When the data is retrieved using getline() in the
get_groups_data() function, this same approach is used. An example of this can be
seen in lines 284 to 287.

Getting the Group Data:

The get_groups_input_data() Function

Getting data is nearly identical to what was presented in the MEDIUM.C listing.
Lines 190 and 195 are changed to reflect that the group’s screen has 14 fields. In
addition to the other cursor movement functions, the page down function is also
modified to set the screen’s last position to 13.

The case for theFa key in lines 207 to 233 is modified only slightly. Thisis the function
toadd the groupsrecord. Before adding the record, the entered data should be verified
to ensure that it is accurate. In this listing, the only edit performed is a check on the
group hame, group.group. This name can’t be blank. Additional edits, such as an edit
on the date, could be added in the e1se statement. A flag called okay is used to see if
all the edits passed. Ifthey did, the record isadded and dataentry continues. If the edits
didn’t pass, a descriptive message is displayed and control is returned to the screen.

The get_groups_data() has the actual getline() cases for retrieving each field. You
should notice that both numbers and characters are retrieved using either GET_Num or
GET_ALPHA With getline(). Several of the getline() cases could be expanded to
include edits. For example, if the user entersamonth of 13 in case 1 (lines 272 to 278),
then there is an error. You could capture this error at this time, rather than waiting
for the user to add the record. One of today’s exercises will ask you to add this edit to
the group’s listing.

Note: You can add edits to the getline() functions; however, you
shouldn’t make them mandatory. If the escape key or the 3 key (for
exiting) are pressed, then the user should still be able to leave the screen.
It would be up to you to determine if the other keys would enable them
to continue.

One last function needs to be reviewed. This is the zero_fill_field() function,
which is used in several of the case statements for getting data. After the call to
getline(Q), the field is padded on the left with zeros with this function. The next line

uses write_string() to rewrite the field on the screen with the zeros. The
zero_fill_field() was a part of the RECOFREC.C listing (Listing 13.1).

Do DON"T|

DO use edits in your programs to ensure the data entered is valid.

DON'T forget to initialize the data elements in your structures. This way
you can be assured that they don’t contain garbage.

DO use Listing 13.4, MEDIUMS.C, as a template for creating your own
data entry screens. “Real” programmers only write one program of any given
type. They then copy it for a starting point of the next program.

The Musical Items
Entry and Edit Screen

Having created the Medium Codes and the Group Information screens, you now only
need the Musical Items screen. Listing 13.6 presents the first cut of this screen. The
functionality is not complete; however, the frame work is. Several of the advanced
features of this listing will be covered on Days 15 through 19. Today, we concentrate
solely on the basic data entry functions.

Note: This listing should be compiled and linked along with Listings
13.1, 13.2, 13.3, and your TYAC.LIB library. You should uncomment
line 58 in Listing 13.1 before compiling and linking.

Ii Listing 13.6. ALBUMS.C. The Musical Items entry and
ﬂpe edit screen.

1: /*

2: * Filename: albums.c

3: *

4: * Author: Bradley L. Jones
5: * Gregory L. Guntle
6: *

continues

425

426

The User Interface: Screen Design

Listing 13.6. continued

7:
8:

* Purpose: Allow entry and edit of information on musical
* items.
*
* Note: This listing is linked with RECofREC.c
* (There isn’t a main() in this listing!)
*
#include <stdio.h>
#include <string.h>
#include <conio.h> /* for getch() */
#include “tyac.h”
#include “records.h”
/* ____________________ *
* prototypes *
K e e e */
#include “recofrec.h”
void draw_albums_screen(void);
void draw_albums_prompts(void);
void display_albums_fields(void);
int clear_albums_fields(void);
int get_albums_data(int row);
int get_albums_input_data(void);
void display_albums_help(void);
int add_albums_data(void);
/* __________________ *
* Defined constants*
K e */
#define ALBUMS_DBF “ALBUMS.DBF”
/* ________________________ *
* structure declarations *
K e e */
ALBUM_REC albums;
ALBUM_REC *p_albums = &albums;
SONG_REC songs[7]1;
/* *
* do_albums_screen() *
* */

int do_albums_screen(void)

{

clear_albums_fields();

56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:

Vo

{

Vo

{

draw_albums_screen();
get_albums_input_data();
return O;

id draw_albums_screen(void)
draw_borders(*“ Musical Items *“); /* draw screen bckgrnd */

write_string(“<Fl=Help> <F3=Exit> <F4=Save>",
ct.abar_fcol, ct.abar_bcol, 24, 3);

draw_albums_prompts(Q);
display_albums_fields(Q);

id draw_albums_prompts(void)

int ctr;
char tmp[10];

write_string(“Title:”,

ct.fld_prmpt_fcol, ct.fld_prmpt_bcol, 4, 3);
write_string(“Group:”,

ct.fld_prmpt_fcol, ct.fld_prmpt_bcol, 5, 3);
write_string(“Medium:”’,

ct.fld_prmpt_fcol, ct.fld_prmpt_bcol, 7, 3);

write_string(“Date Purchased: / /7,

ct.fld_prmpt_fcol, ct.fld_prmpt_bcol, 9, 3);
write_string(“Cost: $ 27,

ct.fld_prmpt_fcol, ct.fld_prmpt_bcol, 9, 33);
write_string(“value: $.7,

ct.fld_prmpt_fcol, ct.fld_prmpt_bcol, 9, 52);
write_string(“Track Song Title”,
ct_fld_prmpt_fcol, ct.fld_prmpt_bcol, 11, 7);
write_string(“Time”,
ct.fld_prmpt_fcol, ct.fld_prmpt_bcol, 11, 59);
for(ctr = 0; ctr < 7; ctr++)
{
sprintf(tmp, “%02d:”,ctr+l);
write_string(tmp,
ct_fld_prmpt_fcol, ct.fld_prmpt_bcol, 13+ctr, 8);

continues

427

428

The User Interface: Screen Design

Listing 13.6. continued

106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:

write_string(“:”,
ct_fld_prmpt_fcol, ct.fld_prmpt_bcol, 13+ctr, 61);
3

write_string(“Total Album Time: oo,
ct.fld_prmpt_fcol, ct.fld_prmpt_bcol, 21, 39);

/* Track information */

void display_albums_fields(void)

{

int ctr;
char tmp[4] = { 0, 0, 0, O }; /* set to null values */
char under_40[41] =

< - - - 7}

write_string(under_40+10, /* 30 underscores */
ct.fld_fcol, ct.fld_bcol, 4, 12);

write_string(under_40+15, /* 25 underlines */
ct.fld_fcol, ct.fld_bcol, 5, 12);

write_string(*“__", ct.fld_fcol, ct.fld_bcol, 7, 13);
write_string(“__", ct.fld_fcol, ct.fld_bcol, 9, 20);
write_string(“__", ct.fld_fcol, ct.fld_bcol, 9, 23);
write_string(*“__", ct.fld_fcol, ct.fld_bcol, 9, 26);
write_string(“__", ct.fld_fcol, ct.fld_bcol, 9, 41);
write_string(“__", ct.fld_fcol, ct.fld_bcol, 9, 45);
write_string(“__", ct.fld_fcol, ct.fld_bcol, 9, 61);
write_string(“__", ct.fld_fcol, ct_.fld_bcol, 9, 65);

for(ctr = 0; ctr < 7; ctr++)

{
write_string(under_40,
ct.fld_fcol, ct_fld_bcol, 13+ctr, 16);
write_string(*“__",
ct.fld_fcol, ct.fld_bcol, 13+ctr, 59);
write_string(“__",
ct.fld_fcol, ct_fld_bcol, 13+ctr, 62);
}
write_string(*“__", ct.fld_fcol, ct.fld_bcol, 21, 57);

write_string(“__", ct.fld_fcol, ct.fld_bcol, 21, 60);

155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:

write_string(“__", ct_fld_fcol, ct.fld_bcol, 21, 63);
/*** display data, if exists ***/

write_string(albums.title, ct_.fld_fcol, ct.fld_bcol, 4, 12);
write_string(albums.group, ct.fld_fcol, ct.fld_bcol, 5, 12);
write_string(albums.medium_code,

ct_fld_fcol, ct.fld_bcol, 7, 13);

strncpy(tmp, albums.date_purch.month, 2);
write_string(tmp, ct.fld_fcol, ct.fld_bcol, 9, 20);
strncpy(tmp+4, albums.date_purch.day, 2);
write_string(tmp, ct.fld_fcol, ct.fld _bcol, 9, 23);
strncpy(tmp, albums.date_purch.year, 2);
write_string(tmp, ct.fld_fcol, ct.fld_bcol, 9, 26);

strncpy(tmp, albums.cost, 3);

write_string(tmp, ct.fld_fcol, ct.fld_bcol, 9, 41);
strncpy(tmp, albums.cost+3, 2);

tmp[3] = NULL;

write_string(tmp, ct.fld_fcol, ct.fld_bcol, 9, 45);

strncpy(tmp, albums.value, 3);

write_string(tmp, ct.fld_fcol, ct.fld_bcol, 9, 61);
strncpy(tmp, albums.value+3, 2);

tmp[3] = NULL;

write_string(tmp, ct.fld_fcol, ct.fld_bcol, 9, 65);

/* song title information */
for(ctr = 0; ctr < 7; ctr++)

{
write_string(songs[ctr].-title,
ct.fld_fcol, ct.fld_bcol, 13+ctr, 16);
write_string(songs[ctr].minutes,
ct.fld_fcol, ct.fld_bcol, 13+ctr, 69);
write_string(songs[ctr].seconds,
ct.fld_fcol, ct.fld_bcol, 13+ctr, 62);
/* calc total here. */
b

/* Finish total count and print here */

__ */

int get_albums_input_data(void)

{

int position,
rv,
okay, /* used with edits */

continues

429

430

The User Interface: Screen Design

Listing 13.6. continued

205:
206:
207:
208:

209:

210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:

/*

loop = TRUE;

Set up exit keys. */
static char fexit_keys[13] = { F1, F3, F4, ESC_KEY, PAGE_DN,

PAGE_UP, CR_KEY, TAB_KEY,
ENTER_KEY, SHIFT_TAB,
DN_ARROW, UP_ARROW, NULL };

static char *exit_keys = fexit_keys;
getline(SET_EXIT_KEYS, 0, 12, 0, 0, O, exit_keys);

/*** setup colors and default keys ***/
getline(SET_DEFAULTS, 0, 0, O, 0, 0, 0);
getline(SET_NORMAL, 0, ct.fld_fcol, ct.fld_bcol,

ct_fld_high_fcol, ct.fld_high_bcol, 0);

getline(SET_UNDERLINE, 0, ct.fld_fcol, ct.fld_bcol,

ct_fld_high_fcol, ct_.fld_high_bcol, 0);

getline(SET_INS, 0, ct.abar_fcol, ct.abar_bcol, 24, 76, 0);

position = O;

while(loop == TRUE) /** get data for top fields **/
{
switch((rv = get_albums_data(position)))

{

case CR_KEY

case TAB_KEY

case ENTER_KEY :

case DN_ARROW : /* go down a Ffield */
(position == 30) ? (position = 0) : position++;
break;

case SHIFT_TAB :

case UP_ARROW : /* go up a field */
(position == 0) ? (position = 30) : position--;
break;

case ESC_KEY :

case F3 : /* exit back to main menu */
iT((yes_no_box(“Do you want to exit?”,

ct.db_fcol, ct.db_bcol)) == “Y”)
{
loop = FALSE;

¥
break;

case F4 : /* add data */
okay = TRUE;

253: if(strlen(albums_title) == 0)

254: {

255: display_msg_box(“Must enter a Title”,
256: ct.err_fcol, ct.err_bcol);
257: position = 0;

258: okay = FALSE;

259: }

260: else

261: {

262: /* edit date */

263:

264: }

265:

266: if(okay == TRUE)

267: {

268: add_albums_data();

269:

270: clear_albums_fields(Q);

271: draw_albums_screen();

272: position = 0;

273: }

274:

275: break;

276:

277: case PAGE_DN : /* go to last data entry field */
278: position = 30;

279: break;

280:

281: case PAGE_UP : /* go to first data entry field */
282: position = 0;

283: break;

284:

285: case F1: /* help */

286: display_albums_help(Q);

287: draw_albums_screen();

288: break;

289:

290: default: /* error */

291: display_msg_box(“ Error “,
292: ct.err_fcol, ct.err_bcol);
293: break;

294:

295: } /* end of switch */

296: } /* end of while */

297:

298: return(rv);

299: }

300:

continues

431

432

320:
321:
322:
323:
324:
325:
326:
327:
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:

int

int get_albums_data(int row)

- {

rv;

char tmp[4] = { 0, 0, 0, O }; /* set to null values */

switch(row)

{

case O :
rv = getline(GET_ALPHA, O, 4, 12, 0, 30,
break;

case 1 :
rv = getline(GET_ALPHA, O, 5, 12, 0, 25,
break;

case 2 :

rv = getline(GET_ALPHA, O, 7, 13, 0, 2,
albums.medium_code);

break;

case 3 :
strncpy(tmp, albums.date_purch.month, 2);
rv = getline(GET_NUM, 0, 9, 20, 0, 2,
zero_Ffill_field(tmp, 2);
write_string(tmp, ct.fld_fcol, ct.fld _bcol,
strncpy(albums.date_purch.month, tmp, 2);
break;

case 4 :
strncpy(tmp, albums.date_purch.day, 2);
rv = getline(GET_NUM, 0, 9, 23, 0, 2,
zero_Fill_field(tmp, 2);
write_string(tmp, ct.fld_fcol, ct_.fld_bcol,
strncpy(albums.date_purch.day, tmp, 2);
break;

case 5 :
strncpy(tmp, albums.date purch.year, 2);
rv = getline(GET_NUM, o, 9, 26, 0, 2,
zero_Fill_field(tmp, 2);
write_string(tmp, ct.fld_fcol, ct.fld_bcol,
strncpy(albums.date_purch.year, tmp, 2);
break;

case 6 :
strncpy(tmp, albums.cost, 3);
rv = getline(GET_NUM, 0, 9, 41, 0, 3,
zero_Ffill_field(tmp, 3);
write_string(tmp, ct.fld_fcol, ct.fld _bcol,
strncpy(albums.cost, tmp, 3);
break;

albums.title);

albums.group);

tmp);

9, 20);

tmp);

9, 23);

tmp);

9, 26);

tmp);

9, 41);

349:
350:
351:
352:
353:
354:
355:
356:
357:
358:
359:
360:
361:
362:
363:
364:
365:
366:
367:
368:
369:
370:
371:
372:
373:
374:
375:
376:
377:
378:
379:
380:
381:
382:
383:
384:
385:
386:
387:
388:
389:
390:
391:
392:
393:
394:
395:
396:
397:
398:

case 7 :
strncpy(tmp, albums.cost+3, 2);
rv = getline(GET_NUM, 0, 9, 45, 0, 2,
zero_Ffill_field(tmp, 2);
write_string(tmp, ct.fld_fcol, ct.fld_bcol,
strncpy(albums.cost+3, tmp, 2);
break;

case 8 :
strncpy(tmp, albums.value, 3);
rv = getline(GET_NUM, o, 9, 61, 0, 3,
zero_FTill_field(tmp, 3);
write_string(tmp, ct.fld_fcol, ct.fld _bcol,
strncpy(albums.value, tmp, 3);
break;

case 9 :
strncpy(tmp, albums.value+3, 2);
rv = getline(GET_NUM, 0, 9, 65, 0, 2,
zero_Till_field(tmp, 2);
write_string(tmp, ct.fld_fcol, ct.fld_bcol,
strncpy(albums.value+3, tmp, 2);

break;
case 10 :
rv = getline(GET_ALPHA, O, 13, 16, 0, 40,
songs[0].-
break;
case 11 :
rv = getline(GET_NUM, 0, 13, 59, 0, 2,
songs[0]-

zero_Till_field(songs[0] -minutes, 2);
write_string(songs[0]-minutes,

ct.fld_fcol, ct.fld_bcol, 13,
break;
case 12 :
rv = getline(GET_NUM, O, 13, 62, 0, 2,

songs[0]-
zero_Till_field(songs[0] .seconds, 2);
write_string(songs[0]-seconds,

ct.fld_fcol, ct.fld_bcol, 13,
break;
case 13 :
rv = getline(GET_ALPHA, O, 14, 16, 0, 40,
songs[1]-
break;
case 14 :
rv = getline(GET_NUM, O, 14, 59, 0, 2,
songs[1].-

zero_FTill_field(songs[1] -minutes, 2);
write_string(songs[1]-minutes,

ct.fld_fcol, ct.fld_bcol, 14,
break;

tmp);

9, 45);

tmp);

9, 61);

tmp);

9, 65);

title);

minutes);

59);

seconds);

62);

title);

minutes);

59);

continues

433

434

The User Interface: Screen Design

Listing 13.6. continued

399:
400:
401:
402:
403:
404:
405:
406:
407:
408:
409:
410:
411:
412:
413:
414:
415:
416:
417:
418:
419:
420:
421:
422:
423:
424
425:
426:
427
428:
429:
430:
431:
432:
433:
434:
435:
436:
437:
438:
439:
440:
441:
442:
443:
444
445:
446:
447 :
448:

case 15 :
rv = getline(GET_NUM, 0, 14, 62, 0, 2,
songs[1]
zero_Fill_field(songs[1] -seconds, 2);
write_string(songs[1].-seconds,

ct.fld_fcol, ct._fld_bcol, 14,
break;
case 16 :
rv = getline(GET_ALPHA, 0, 15, 16, 0, 40,
songs[2]
break;
case 17 :
rv = getline(GET_NUM, 0, 15, 59, 0, 2,
songs[2]

zero_FTill_field(songs[2] -minutes, 2);
write_string(songs[2].minutes,

ct.fld_fcol, ct.fld_bcol, 15,
break;
case 18 :
rv = getline(GET_NUM, 0, 15, 62, 0, 2,

songs[2]
zero_Fill_field(songs[2] -seconds, 2);
write_string(songs[2]-seconds,

ct.fld_fcol, ct._fld_bcol, 15,
break;
case 19 :
rv = getline(GET_ALPHA, 0, 16, 16, 0, 40,
songs[3]
break;
case 20 :
rv = getline(GET_NUM, O, 16, 59, 0, 2,
songs[3]

zero_FTill_field(songs[3]-minutes, 2);
write_string(songs[3].minutes,

ct.fld_fcol, ct.fld_bcol, 16,
break;
case 21 :
rv = getline(GET_NUM, O, 16, 62, 0, 2,

songs[3]
zero_Fill_field(songs[3]-seconds, 2);
write_string(songs[3]-seconds,

ct.fld_fcol, ct.fld_bcol, 16,
break;
case 22 :
rv = getline(GET_ALPHA, O, 17, 16, 0, 40,
songs[4]
break;
case 23 :
rv = getline(GET_NUM, O, 17, 59, 0, 2,
songs[4]

.seconds);

62);

-title);

.minutes);

59);

.seconds);

62);

-title);

.minutes);

59);

.seconds);

62);

-title);

.minutes);

449:
450:
451:
452:
453:
454 :
455:
456:
457:
458:
459:
460:
461:
462:
463:
464:
465:
466:
467:
468:
469:
470:
471:
472:
473:
474:
475:
476:
477:
478:
479:
480:
481:
482:
483:
484:
485:
486:
487:
488:
489:
490:
491:
492:
493:
494:
495:
496:
497:

zero_Fill_field(songs[4] -minutes, 2);

write_string(songs[4].-minutes,
ct.fld_fcol, ct.fld_bcol, 17,

break;
case 24 :

rv = getline(GET_NUM, 0, 17, 62, 0, 2,

songs[4].-

zero_FTill_field(songs[4] -seconds, 2);

write_string(songs[4]-seconds,
ct.fld_fcol, ct.fld_bcol, 17,

break;
case 25 :

rv = getline(GET_ALPHA, O, 18, 16, 0, 40,

break;
case 26 :

songs[5]-

rv = getline(GET_NUM, O, 18, 59, 0, 2,

songs[5]-

zero_Fill_field(songs[5] -minutes, 2);

write_string(songs[5]-minutes,
ct.fld_fcol, ct.fld_bcol, 18,

break;
case 27 :

rv = getline(GET_NUM, 0, 18, 62, 0, 2,

songs[5]-

zero_Till_field(songs[5] -seconds, 2);

write_string(songs[5]-seconds,
ct.fld_fcol, ct.fld_bcol, 18,

break;
case 28 :

rv = getline(GET_ALPHA, 0, 19, 16, 0, 40,

break;
case 29 :

songs|[6]-

rv = getline(GET_NUM, O, 19, 59, 0, 2,

songs[6]-

zero_Fill_field(songs[6] -minutes, 2);

write_string(songs[6]-minutes,
ct.fld_fcol, ct.fld_bcol, 19,

break;
case 30 :

rv = getline(GET_NUM, 0, 19, 62, 0, 2,

songs[6]-

zero_Till_field(songs[6] -seconds, 2);

write_string(songs[6]-seconds,
ct.fld_fcol, ct.fld_bcol, 19,

break;

}

return(rv);

59);

seconds) ;

62);

title);

minutes);

59);

seconds) ;

62);

title);

minutes);

59);

seconds) ;

62);

continues

435

436

The User Interface: Screen Design

Listing 13.6. continued

498:
499:
500:
501:
502:
503:
504:
505:
506:
507:
508:
509:
510:
511:
512:
513:
514:
515:
516:
517:
518:
519:
520:
521:
522:
523:
524:
525:
526:
527:
528:
529:
530:
531:
532:
533:
534:
535:
536:
537:
538:
539:
540:
541:
542:
543:
544:
545:

3
/* __ *
* clear_albums_fields(Q *
A */
int clear_albums_fields(void)
{
int ctr;
getline(CLEAR_FIELD, 0, 31, 0, 0, O, albums.title);
getline(CLEAR_FIELD, 0, 26, 0, 0, O, albums.group);
getline(CLEAR_FIELD, 0, 3, 0, 0, 0, albums.medium_code);
getline(CLEAR_FIELD, 0, 2, 0, 0, 0, albums.date_purch.month);
getline(CLEAR_FIELD, O, 2, 0, 0, O, albums.date_purch.day);
getline(CLEAR_FIELD, 0, 2, 0, 0, 0, albums.date_purch.year);
getline(CLEAR_FIELD, O, 6, 0, O, O, albums.cost);
getline(CLEAR_FIELD, O, 6, 0, 0, O, albums.value);

albums.nbr_songs = 0;
for(ctr = 0; ctr < 7; ctr++)

{
getline(CLEAR_FIELD, 0, 41, 0, 0, 0, songs[ctr].-title);
getline(CLEAR_FIELD, 0, 3, 0, 0, O, songs[ctr].minutes);
getline(CLEAR_FIELD, 0, 3, 0, 0, O, songs[ctr].seconds);
}
return(0);
by
/* __ *
* display_albums_help() *
K */

void display_albums_help(void)
{
grid(11, 16, 19, 59, ct.shdw_fcol, ct.bg_bcol, 3);
box(10, 15, 20, 60, SINGLE_BOX, FILL_BOX,
ct.help_fcol, ct.help_bcol);

write_string(“This is a screen for entering musical”,
ct.help_fcol, ct.help_bcol, 11, 22);
write_string(“items such as albums.”,
ct.help_fcol, ct_help_bcol, 12, 22);

write_string(“To exit screen, press <F3> or <ESC>.”,
ct.help_fcol, ct_help_bcol, 13, 22);

write_string(“Press any key to continue...”,
ct_help_fcol, ct.help_bcol, 14, 22);

546: cursor(24, 79);

547: getch(Q);

548: }

549:

550 /*
551: add_albums_data();

552: Returns: 1 - if all okay

553: 0 - if not all okay

554: Note: Titles are not written to file. These
555: will be covered on a later day.

556 Fem */
557:

558: int add_albums_data(void)

559: {

560: int rv = 0;

561: FILE *fp;

562:

563: if((fp = fopen(ALBUMS_DBF, “a”)) == NULL)

564: {

565: display_msg_box(*“Error opening file...”,

566: ct.err_fcol, ct.err_bcol);

567: }

568: else

569: {

570: if((fwrite(p_albums, sizeof(albums), 1, fp)) == 0)
571: {

572: display_msg_box(“Error writing data...”,

573: ct.err_fcol, ct.err_bcol);

574: }

575: else

576: {

577: display_msg_box(““Record added”, ct.db_fcol, ct.db_bcol);
578: rv = 1;

579: }

580:

581: fclose(fp);

582: }

583: return(rv);

584: }

585:

586: /* *
587: * end of listing *
588: * */

Fox % % ok ok

*
*
*
*
*
*

437

o ® DAY ®
13 The User Interface: Screen Design
4

{Fi=Help> LF3=Exit> {Fh=Save’

This listing is almost identical in functionality to the Group Information listing.
Thereisonly onesubtle difference in the display of the title fields. When the file access
controls are covered on Day 19, this listing will be equipped with the capability to add
a variable number of record titles. In this version of the listing, only seven titles can
be entered. When adding the data with the F4 key, only the aloum information is
added; the individual titles are not. Again, this will be rectified on Day 19 when file
access is covered.

You should note each of the areas that are affected by the titles. The first area is the
additional structure in line 47. Because only seven titles are worked with at this time,
an array is created that will hold only seven. In lines 101 to 108, the prompts for the
titles are displayed on the screen. Rather than display each individually, a loop is used.
Similar loops are used in lines 143 to 151 to display the field underlines and in lines
184 to 193 to display the field values.

In lines 342 to 354, cases are presented to retrieve the cost of the album. Because the
cost can be a decimal number, the input is retrieved in two pieces. First, the numbers
to the left of the decimal are retrieved. This is followed by retrieving the numbers to
the right. While this works, it isn’t an optimal solution. You should consider
modifying your getline() function to accept decimal numbers using one of the
unused option numbers.

Synopsis: Where Do You Go
from Here?

Today, you have covered a great deal of code. While your application is beginning to
doquiteabit, itisn't complete. In fact, you have justbegun. On Day 14, you will cover
menuing, which will help complete your application’s user interface. Day 15 will give

438

your application the capability to work with the data files. On this day your
application will be almost fully functional; there will still be more to do. Days 16 and
17 will help bring the application to near completion. Day 16 will aid you in adding
help to your program. This will include an easy way of providing context sensitive
help. Day 17 will add the little features that were mentioned in the specification. In
addition, Day 17 will help you create a screen that will enable the user of a program
to change the application’s colors. When you complete Day 17, you will have
completed your application with the exception of testing and reporting.

Summary

Today is what can be considered an exciting day. Using all of the functions that you
have created on the previous days, along with the specification from Day 12, you
began your application. Before starting, some of the standards for creating an entry
and edit screen were covered. With these in mind, the code was then presented. First,
a simplistic menu was presented, which will be replaced on Day 14. After this, you
were presented with three listings that perform each of the entry and edit windows in
the specification from Day 12. Detailed analysis helped you understand exactly what
is going on.

Q&A

Q Are there different kinds of edits?

A Yes, three different types of edits are generally performed: pre-edits, post-
edits, and process edits.

Q What are the differences among pre-edits, post-edits, and process edits?

A The pre-edits occur when a field is first entered. A post-edit occurs when
leaving a field. A process edit occurs when the user is ready to process the
information on the entire screen. Common pre-edits involve initializations
and calculations. Post-edits are a more popular edit. They generally validate
information entered into a field. Process edits ensure all the necessary fields
are entered in addition to performing edits involving more than one field.

439

o ® DAY ®
13 The User Interface: Screen Design
4

Q Should I use my creativity to reuse the available function keys?

A You should not try to make up your own uses for the keys on the keyboard.
At the beginning of today’s material, some of the standard uses for keys—
and the benefits of using them—uwere presented. If you were to use the F1
key to delete a record, many people would inadvertently delete records when
they tried to get help. (F1 is generally used for help.)

Q Are there published standards for creating applications?

A IBM has created standards for creating applications. These standards are
referred to in its Systems Application Architecture (SAA) documents. IBM’s
standards for screen interfaces are referred to as Common User Access
(CUA) standards. Microsoft has also developed standards for developing
Windows applications.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned.

Quiz
1. What are some of the benefits that can be gained by following standards—

even if the standards are informal?

What should the F1 function key do?

What should the F3 function key do?

What should the F5 function key do?

If you were given a message box that was red with yellow letters, should you
be concerned?

o~ w DN

6. True or false: A beep can serve several purposes in an application. You can
have it beep when the application starts, when a record is added, when an
error occurs, and when the user exits.

7. What is an easy approach to creating your own entry and edit screens?

440

Exercises

1. Add an edit to the Group Information screen. This should be a post-edit for

the month field. If a value is entered, it should be from 1 to 12. Any other
value should receive an error message. (Keep in mind, if a key such as the
Escape key or F3 is entered, it should still be processed.)

. ON YOUR OWN: Add additional edits to the preceding listings. Use your
own judgment on what edits should be added. Edits can include edits on
cost, dates, times, and more.

. ON YOUR OWN: Create an application of your own. Create a contact
system that contains an entry screen for entering the names, addresses, and
phone numbers of each person.

Note: Because Exercise 3 will take you some time, only three exercises are
presented. On following days, you will only be presented with a few
exercises. Some of these exercises will ask you to expand on the applica-
tion you developed today. This application is from Exercise 3.

441

