
133

5

WEEK

55

11

Efficiency and
Porting

134

Efficiency and Porting
DAYDAY

5

When writing programs, it’s easy to use everything the compiler provides. With a
language such as C, it’s easy to write code that can be used on different computers
including PC compatibles, Macintoshes, mini-computers, and mainframes. Because
of C’s flexibility, you need to know in advance the direction in which you are headed.
Today you learn:

■ What is meant by efficiency and porting.

■ The difference between efficiency and maintainability.

■ What types of applications are most likely to be nonportable.

■ How to ensure portability with the ANSI standard.

What Are Efficiency and
Portability?

If you were to take a course in computer programming, two topics would inevitably
be mentioned: efficiency and portability. These topics can be especially important
when programming in C.

Efficiency
When efficiency is mentioned, it is typically in reference to writing the least amount
of code to gain the most functionality. An efficient program is one that only uses
system resources when needed. In addition, it is coded to use as little redundant or
unnecessary code as possible.

Compilers, Computers, and Efficiency
In days past, if you wanted the most efficient code, you wrote it in assembler. By
writing at such a low level, you could weed out any non-essential commands. Today’s
compilers and computers are much better equipped than those of yesteryear. If you
talk to programmers of the early 1980s, you’ll hear tales of writing small programs that
use minimal resources. Today’s computers allow a larger amount of leeway.

Efficiency Versus Maintainability
Although writing efficient code is important, the greatest cost of creating programs
is the amount of time spent programming code. It is best to design the code to

135

5

Type

minimize the amount of time that must be spent on it. Because writing efficient code
can often be time-intensive, the quicker it is written, the less efficient the code may
be.

Programming time can be broken down to two phases. The first is the initial time
spent developing and coding a program. The amount time for this phase depends on
the approach taken. (In Day 12, you’ll be shown different ways to approach the initial
development of a program.) The second phase is maintaining the program. This
maintenance can involve either fixing problems or adding enhancements. Such
maintenance can quickly add up to much more time than what was initially spent
developing the program.

Coding a program for efficiency can also lead to code that is harder to maintain. When
efficiency is the most important factor, coding tricks may be employed. These tricks
may make sense to the person who programmed them; however, they seldom are clear
to the person who maintains the code. For this reason, the efficiency gained by the
coding tricks may be lost in the time and effort spent maintaining them.

Expert Tip: Coding for maintainability is usually more important
than coding for the ultimate efficiency.

White Space
Many super-techie programmers try to write compact code. These programmers,
along with many others, believe that compact code is more efficient. The next two
listings each contain the same code; however, one contains more spacing.

Listing 5.1. Code with spacing.

1: /* Program: list0501.c
2: * Author: Bradley L. Jones
3: * Purpose: This program and list0502.c demonstrate the
4: * differences made by white space in a listing.
5: *===*/
6:
7: int main(void)
8: {
9: int ctr, ctr2;
10:
11: printf(“\n\nA program with useless output”);
12:

continues

136

Efficiency and Porting
DAYDAY

5

Type

13: printf(“\n”);
14:
15: for(ctr = 0; ctr < 26; ctr++)
16: {
17: printf(“\n”);
18:
19: for(ctr2 = 0; ctr2 <= ctr; ctr2++)
20: {
21: printf(“%c”, (‘A’ + ctr));
22: }
23: }
24:
25: return;
26: }

A program with useless output

A
BB
CCC
DDDD
EEEEE
FFFFFF
GGGGGGG
HHHHHHHH
IIIIIIIII
JJJJJJJJJJ
KKKKKKKKKKK
LLLLLLLLLLLL
MMMMMMMMMMMMM
NNNNNNNNNNNNNN
OOOOOOOOOOOOOOO
PPPPPPPPPPPPPPPP
QQQQQQQQQQQQQQQQQ
RRRRRRRRRRRRRRRRRR
SSSSSSSSSSSSSSSSSSS
TTTTTTTTTTTTTTTTTTTT
UUUUUUUUUUUUUUUUUUUUU
VVVVVVVVVVVVVVVVVVVVVV
WWWWWWWWWWWWWWWWWWWWWWW
XXXXXXXXXXXXXXXXXXXXXXXX
YYYYYYYYYYYYYYYYYYYYYYYYY
ZZZZZZZZZZZZZZZZZZZZZZZZZZ

Listing 5.2. Compact code.

1: /* Program: list0502.c
2: * Author: Bradley L. Jones

Listing 5.1. continued

Output

137

5

3: * Purpose: This program and list0501.c demonstrate the
4: * differences made by white space in a listing.
5: *===*/
6: int main(void){
7: int ctr,ctr2;
8: printf(“\n\nA program with useless output”);
9: printf(“\n”);
10: for(ctr=0;ctr<26;ctr++){
11: printf(“\n”);
12: for(ctr2=0;ctr2<=ctr;ctr2++){printf(“%c”,(‘A’+ctr));}}
13: return;}

A program with useless output

A
BB
CCC
DDDD
EEEEE
FFFFFF
GGGGGGG
HHHHHHHH
IIIIIIIII
JJJJJJJJJJ
KKKKKKKKKKK
LLLLLLLLLLLL
MMMMMMMMMMMMM
NNNNNNNNNNNNNN
OOOOOOOOOOOOOOO
PPPPPPPPPPPPPPPP
QQQQQQQQQQQQQQQQQ
RRRRRRRRRRRRRRRRRR
SSSSSSSSSSSSSSSSSSS
TTTTTTTTTTTTTTTTTTTT
UUUUUUUUUUUUUUUUUUUUU
VVVVVVVVVVVVVVVVVVVVVV
WWWWWWWWWWWWWWWWWWWWWWW
XXXXXXXXXXXXXXXXXXXXXXXX
YYYYYYYYYYYYYYYYYYYYYYYYY
ZZZZZZZZZZZZZZZZZZZZZZZZZZ

These programs simply print each of the characters of the alphabet. Each
consecutive letter is printed one more time than the previous. The letter A is
printed once, the letter B twice, up to the letter Z, which is printed 26 times. The

output demonstrates that by changing the white space, you don’t change the way the
program operates.

Output

Analysis

138

Efficiency and Porting
DAYDAY

5

If you look at the size of the two object files and the two executable files created, you’ll
find that they are the same. Table 5.1 contains all the associated files and their sizes.
The source files are different sizes because of the white space, which is removed by the
compiler. However, white space doesn’t make the code less efficient. In fact, while
white space makes the source file a little bigger, it doesn’t detract from a program’s
efficiency.

Table 5.1. The file sizes of the two listings.

Filename Size

LIST0501.C 527

LIST0502.C 431

LIST0501.EXE 6536

LIST0502.EXE 6536

LIST0501.OBJ 383

LIST0502.OBJ 383

If you look at Listings 5.1 and 5.2 again, you’ll see that Listing 5.1 is much easier to
read and understand. The code in Listing 5.1 is also easier—and quicker—for others
to maintain.

Review Tip: Use white space to make your programs more readable.

DO DON’T
DO use white space to make your programs more readable.

DO consider maintainability over efficiency when coding your programs.

Portability
One of the major reasons people choose C as their programming language is its
portability. C is one of the most portable languages. A program written in a portable

139

5

language can be moved from one compiler to another, or from one computer system
to another. When moved, the program can be recompiled without any coding
modifications. These two areas—hardware portability and compiler portability—are
what characterize a portable language. C programs can be written to be portable across
both. A C program is truly portable if it can be recompiled on any type of machine
with any C compiler.

The ANSI Standard
Portability doesn’t happen by accident. It occurs by adhering to a set of standards
adhered to by the programmer and your compiler. If you use a compiler that doesn’t
adhere to the portability standards, you’ll be unable to write usable portable code. For
this reason, it is wise to choose a compiler that follows the standards for C
programming set by the American National Standards Institute (ANSI). The ANSI
committee also sets standards for many areas including other programming languages.
The ANSI standards are predominantly accepted and used by programmers and
compilers.

Standards aren’t always good. Too many standards can limit your ability to create
effective programs. Because C is a powerful language, it could be detrimental to
implement too many standards. The ANSI standards leave a lot of undefined areas to
prevent this power limitation. The downside to undefined areas is each compiler can
create its own implementations. There are several such areas that will be detailed later
today.

The ANSI Keywords
The C language contains relatively few keywords. A keyword is a word that is reserved
for a program command. The ANSI C keywords are listed in Table 5.2.

Table 5.2. The ANSI C keywords.

asm auto break case char

const continue default do double

else enum extern float for

goto if int long register

return short signed sizeof static

struct switch typedef union unsigned

void volatile while

140

Efficiency and Porting
DAYDAY

5

Type

Most compilers provide other keywords. Examples of compiler-specific keywords are
near and huge. Although several compilers might use the same compiler-specific
keywords, there is no guarantee that they will be portable to every ANSI standard
compiler.

Case Sensitivity
Case sensitivity is an important issue in programming languages. Unlike some
languages that ignore case, C is case-sensitive. This means that a variable named x is
different than a variable named X. Listing 5.3 illustrates this.

Listing 5.3. Case sensitivity.

1: /* Program: list0505.c
2: * Author: Bradley L. Jones
3: * Purpose: This program demonstrates case sensitivity
4: *===*/
5:
6: int main(void)
7: {
8: int var1 = 1,
9: var2 = 2;
10: char VAR1 = ‘A’,
11: VAR2 = ‘B’;
12: float Var1 = 3.3,
13: Var2 = 4.4;
14: int xyz = 100,
15: XYZ = 500;
16:
17: printf(“\n\nPrint the values of the variables...\n”);
18:
19: printf(“\nThe integer values: var1 = %d, var2 = %d”,
20: var1, var2);
21: printf(“\nThe character values: VAR1 = %c, VAR2 = %c”,
22: VAR1, VAR2);
23: printf(“\nThe float values: Var1 = %f, Var2 = %f”,
24: Var1, Var2);
25: printf(“\nThe other integers: xyz = %d, XYZ = %d”,
26: xyz, XYZ);
27:
28: printf(“\n\nDone printing the values!”);
29:
30: return;
31: }

141

5

Print the values of the variables...

The integer values: var1 = 1, var2 = 2
The character values: VAR1 = A, VAR2 = B
The float values: Var1 = 3.300000, Var2 = 4.400000
The other integers: xyz = 100, XYZ = 500

Done printing the values!

This program uses several variables with the same names. In lines 8 and 9, var1
and var2 are defined as integer values. In lines 10 and 11, the same variable names
are used with different cases. This time VAR1 and VAR2 are in all uppercase. In lines

12 and 13, a third set of declarations is made with the same names, but a different case.
This time Var1 and Var2 are declared as float values. In each of these three sets of
declarations, values are placed in the variables so that they can later be printed. The
printing for these three sets of declarations occurs in lines 19 to 24. As you can see,
the values placed in the variables are retained, and each is printed.

Lines 14 and 15 declare two variables of the same type—integers—and the same
names. The only difference between these two variables is that one is uppercase and
the other is not. Each of these variables has its own value, which is printed in lines 25
and 26.

Although it’s possible to use only case to differentiate variables, this isn’t a practice to
enter into lightly. Not all computer systems that have C compilers available are case
sensitive. Because of this, code may not be portable if only case is used to differentiate
variables. For portable code, you should always ensure that variables are differentiated
by something other than only the case of the variable name.

Case sensitivity can cause problems in more than just the compiler. It can also cause
problems with the linker. The compiler may be able to differentiate between variables
with only case differences, but the linker may not. Case sensitivity can affect the
workings of both the compiler and the linker.

Most compilers and linkers enable you to set a flag to cause case to be ignored. You
should check your compiler to determine the flag that needs to be set. When you
recompile a listing with variables differentiated by case only, you should get an error
similar to the following:

list05xx.c:
Error list05xx.c 15: Multiple declaration for ‘var1’ in function main
*** 1 errors in Compile ***

Of course, var1 would be whatever variable you are using.

Output

Analysis

142

Efficiency and Porting
DAYDAY

5

Portable Characters
Characters within the computer are represented as numbers. On an IBM PC or
compatible, the letter A is represented by the number 6, and the letter a is represented
by the number 97. These numbers come from an ASCII table.

If you’re writing portable programs, you cannot assume that the ASCII table is the
character translation table being used. A different table may be used on a different
computer system. On a mainframe, character 65 may not be A.

 Warning: You must be careful when using character numerics. Character
numerics may not be portable.

There are two general rules about how a character set is to be defined. The first
restriction is that the size of a character’s value can’t be larger than the size of the char
type. In an 8-bit system, 255 is the maximum value that can be stored in a single char
variable. Because of this, you wouldn’t have a character with a value greater than 255.
If you were working on a machine with a 16-bit character, 65,535 is the maximum
value for a character.

The second rule restricting the character set is that each character must be represented
by a positive number. The portable characters within the ASCII character set are those
from 1 to 127. The values from 128 to 255 are not guaranteed to be portable. These
extended characters can’t be guaranteed because a signed character has only 127
positive values.

Guaranteeing ANSI Compatibility
The predefined constant __STDC__ is used to help guarantee ANSI compatability.
When the listing is compiled with ANSI compatibility set on, this constant is
defined—generally as 1. It is undefined when ANSI compatibility isn’t on.

Virtually every compiler gives you the option to compile with ANSI enforced. This
is usually done by either setting a switch within the IDE (Integrated Programming
Environment) or by passing an additional parameter on the command line when
compiling. By setting the ANSI on, you help ensure that the program will be portable
to other compilers and platforms.

To compile a program using Borland’s Turbo C, you would enter the following on
the command line:

143

5

TCC -A program.c

If you are compiling with a Microsoft compiler, you would enter:

CL /Ze program.c

The compiler then provides additional error checking to ensure that ANSI rules are
met. In some cases, there are errors and warnings that are no longer checked. An
example is prototype checking. Most compilers display warnings if a function isn’t
prototyped before it is used; however, the ANSI standards don’t require this. Because
ANSI doesn’t require the prototypes, you may not receive the required prototype
warnings.

There are several reasons why you wouldn’t want to compile your program with ANSI
compatibility on. The most common reason involves taking advantage of your
compiler’s added features. Many features, such as special screen handling functions,
aren’t ANSI standard, or they are compiler-specific. If you decide to use these
compiler-specific features, you won’t want the ANSI flag set. In addition, if you use
these compiler-specific features, you may eliminate the portability of your program.
Later today, you’ll see a way around this limitation.

DO DON’T
DO use more than just case to differentiate variable names.

DON’T assume numeric values for characters.

Using Portable Numeric Variables
The numeric values that can be stored in a specific variable type may not be consistent
across compilers. There are only a few rules that are defined within the ANSI standard
in regards to the numeric values that can be stored in each variable type. On Day 2,
Table 2.1 presented the values that are typically stored in IBM-compatible PCs. These
values, however, aren’t guaranteed.

The following rules can be observed about variable types:

■ A character (char) is the smallest data type. A character variable (type char)
will be 1 byte.

■ A short variable (type short) will be smaller than or equal to an integer
variable (type int).

Borland

Microsoft

144

Efficiency and Porting
DAYDAY

5

Type

■ An integer variable (type int) will be smaller than or equal to the size of a
long variable (type long).

■ An unsigned integer variable (type unsigned) is equal to the size of a signed
integer variable (type int).

■ A float variable (type float) will be less than or equal to the size of a double
variable (type double).

Listing 5.4 is commonly used to print the size of the variables on the machine that the
program is compiled on.

Listing 5.4. The size of the data types.

1: /* Program: list0506.c
2: * Author: Bradley L. Jones
3: * Purpose: This program prints the sizes of the variable
4: * types of the machine the program is compiled on.
5: *===*/
6:
7: int main(void)
8: {
9: printf(“\nVariable Type Sizes”);
10: printf(“\n=========================”);
11: printf(“\nchar %d”, sizeof(char));
12: printf(“\nshort %d”, sizeof(short));
13: printf(“\nint %d”, sizeof(int));
14: printf(“\nfloat %d”, sizeof(float));
15: printf(“\ndouble %d”, sizeof(double));
16:
17: printf(“\n\nunsigned char %d”, sizeof(unsigned char));
18: printf(“\nunsigned short %d”, sizeof(unsigned short));
19: printf(“\nunsigned int %d”, sizeof(unsigned int));
20:
21: return;
22: }

Variable Type Sizes
=========================
char 1
short 2
int 2
float 4
double 8

unsigned char 1
unsigned short 2
unsigned int 2

Output

145

5

As you can see, the sizeof() operator is used to print the size in bytes of each
variable type. The output shown is based on being compiled on a 16-bit IBM-
compatible PC with a 16-bit compiler. If compiled on a different machine or

with a different compiler, the sizes may be different. For example, a 32-bit compiler
on a 32-bit machine may yield 4 bytes for the size of an integer rather than 2.

Maximum and Minimum Values
If different machines have variable types that are different sizes, how can you know
what values can be stored? It depends on the number of bytes that make up the data
type, and whether the variable is signed or unsigned. Table 5.3 shows the different
values that can be stored based on the number of bytes. The maximum and minimum
values that can be stored for integral types, such as integers, are based on the bits. For
floating values such as floats and doubles, larger values can be stored at the cost of
precision. Table 5.3 shows both integral variable and floating decimal values.

Table 5.3. Possible values based on byte size.

Number Unsigned Signed Signed
of Bytes Maximum Minimum Maximum

Integral Types

1 255 -128 127

2 65,535 -32,768 32,767

4 4,294,967,295 -2,147,483,648 2,147,438,647

8 1.844674 x E19

Floating Decimal Sizes

4* 3.4 E-38 3.4 E38

8** 1.7 E-308 1.7 E308

10*** 3.4 E-4932 1.1 E4932

*Precision taken to 7 digits

**Precision taken to 15 digits

***Precision taken to 19 digits

Analysis

146

Efficiency and Porting
DAYDAY

5

Knowing the maximum value based on the number of bytes and variable type is good;
however, as seen earlier, you don’t always know the number of bytes in a portable
program. In addition, you can’t be completely sure of the level of precision used in
floating-point numbers. Because of this, you have to be careful about what number
you assign to variables. For example, assigning the value of 3,000 to an integer variable
is a safe assignment, but what about assigning 100,000? If it’s an unsigned integer on
a 16-bit machine, you’ll get unusual results because the maximum value is 65,535. If
a 4-byte integer is being used, then assigning 100,000 would be okay.

 Warning: You aren’t guaranteed that the values in Table 5.3 are the same
for every compiler. Each compiler may choose a slightly different number.
This is especially true with the floating-point numbers which may have
different levels of precision. Tables 5.4 and 5.5 provide a compatible way
of using these numbers.

ANSI has standardized a set of defined constants that are to be included in the header
files LIMITS.H and FLOAT.H. These constants define the number of bits within a
variable type. In addition, they define the minimum and maximum values. Table 5.4
lists the values defined in LIMITS.H. These values apply to the integral data types.
The values in FLOAT.H contain the values for the floating-point types.

Table 5.4. The ANSI-defined constants within LIMITS.H.

Constant Value

CHAR_BIT Character variable’s number of bits.

CHAR_MIN Character variable’s minimum value (signed).

CHAR_MAX Character variable’s maximum value (signed).

SCHAR_MIN Signed character variable’s minimum value.

SCHAR_MAX Signed character variable’s maximum value.

UCHAR_MAX Unsigned character’s maximum value.

SHRT_MIN Short variable’s minimum value.

SHRT_MAX Short variable’s maximum value.

USHRT_MAX Unsigned short variable’s maximum value.

147

5

Constant Value

INT_MIN Integer variable’s minimum value.

INT_MAX Integer variable’s maximum value.

UINT_MAX Unsigned integer variable’s maximum value.

LONG_MIN Long variable’s minimum value.

LONG_MAX Long variable’s maximum value.

ULONG_MAX Unsigned long variable’s maximum value.

Table 5.5. The ANSI-defined constants within FLOAT.H.

Constant Value

FLT_DIG Precision digits in a variable of type float.

DBL_DIG Precision digits in a variable of type double.

LDBL_DIG Precision digits in a variable of type long double.

FLT_MAX Float variable’s maximum value.

FLT_MAX_10_EXP Float variable’s exponent maximum value
(base 10).

FLT_MAX_EXP Float variable’s exponent maximum value
(base 2).

FLT_MIN Float variable’s minimum value.

FLT_MIN_10_EXP Float variable’s exponent minimum value
(base 10).

FLT_MIN_EXP Float variable’s exponent minimum value
(base 2).

DBL_MAX Double variable’s maximum value.

DBL_MAX_10_EXP Double variable’s exponent maximum value
(base 10).

DBL_MAX_EXP Double variable’s exponent maximum value
(base 2).

continues

148

Efficiency and Porting
DAYDAY

5

Type

Table 5.5. continued

Constant Value

DBL_MIN Double variable’s minimum value.

DBL_MIN_10_EXP Double variable’s exponent minimum value
(base 10).

DBL_MIN_EXP Double variable’s exponent minimum value
(base 2).

LDBL_MAX Long double variable’s maximum value.

LDBL_MAX_10_DBL Long double variable’s exponent maximum
value (base 10).

LDBL_MAX_EXP Long double variable’s exponent maximum
value (base 2).

LDBL_MIN Long double variable’s minimum value.

LDBL_MIN_10_EXP Long double variable’s exponent minimum
value (base 10).

LDBL_MIN_EXP Long double variable’s exponent minimum
value (base 2).

The values in Tables 5.4 and 5.5 can be used when storing numbers. Ensuring that
a number is above or equal to the minimum constant and less than or equal to the
maximum constant will ensure that the listing will be portable. Listing 5.5 prints the
values stored in the ANSI-defined constants and Listing 5.6 demonstrates the use of
some of these constants. The output may be slightly different depending on the
compiler used.

Listing 5.5. The values stored in the
ANSI-defined constants.

1: /* Program: list0507.c
2: * Author: Bradley L. Jones
3: * Purpose: Display of defined constants.
4: *===*/
5:
6: #include <stdio.h>
7: #include <float.h>
8: #include <limits.h>
9:

149

5

10: int main(void)
11: {
12: printf(“\n CHAR_BIT %d “, CHAR_BIT);
13: printf(“\n CHAR_MIN %d “, CHAR_MIN);
14: printf(“\n CHAR_MAX %d “, CHAR_MAX);
15: printf(“\n SCHAR_MIN %d “, SCHAR_MIN);
16: printf(“\n SCHAR_MAX %d “, SCHAR_MAX);
17: printf(“\n UCHAR_MAX %d “, UCHAR_MAX);
18: printf(“\n SHRT_MIN %d “, SHRT_MIN);
19: printf(“\n SHRT_MAX %d “, SHRT_MAX);
20: printf(“\n USHRT_MAX %d “, USHRT_MAX);
21: printf(“\n INT_MIN %d “, INT_MIN);
22: printf(“\n INT_MAX %d “, INT_MAX);
23: printf(“\n UINT_MAX %ld “, UINT_MAX);
24: printf(“\n LONG_MIN %ld “, LONG_MIN);
25: printf(“\n LONG_MAX %ld “, LONG_MAX);
26: printf(“\n ULONG_MAX %e “, ULONG_MAX);
27: printf(“\n FLT_DIG %d “, FLT_DIG);
28: printf(“\n DBL_DIG %d “, DBL_DIG);
29: printf(“\n LDBL_DIG %d “, LDBL_DIG);
30: printf(“\n FLT_MAX %e “, FLT_MAX);
31: printf(“\n FLT_MIN %e “, FLT_MIN);
32: printf(“\n DBL_MAX %e “, DBL_MAX);
33: printf(“\n DBL_MIN %e “, DBL_MIN);
34:
35: return(0);
36: }

 CHAR_BIT 8
 CHAR_MIN -128
 CHAR_MAX 127
 SCHAR_MIN -128
 SCHAR_MAX 127
 UCHAR_MAX 255
 SHRT_MIN -32768
 SHRT_MAX 32767
 USHRT_MAX -1
 INT_MIN -32768
 INT_MAX 32767
 UINT_MAX 65535
 LONG_MIN -2147483648
 LONG_MAX 2147483647
 ULONG_MAX 3.937208e-302
 FLT_DIG 6
 DBL_DIG 15
 LDBL_DIG 19
 FLT_MAX 3.402823e+38
 FLT_MIN 1.175494e-38
 DBL_MAX 1.797693e+308
 DBL_MIN 2.225074e-308

Output

150

Efficiency and Porting
DAYDAY

5

Type

This listing is straightforward. The program consists of printf() function calls.
Each function call prints a different defined constant. You’ll notice the conver-
sion character used (that is, %d) depends on the type of value being printed. This

listing provides a synopsis of what values your compiler used. You could also have
looked in the FLOAT.H and LIMITS.H header files to see if these values had been
defined. This program should make determining the constant values easier.

Listing 5.6. Using the ANSI-defined constants.

1: /* Program: list0508.c
2: * Author: Anon E. Mouse
3: *
4: * Purpose: To use maximum and minimum constants.
5: *
6: * Note: Not all valid characters are displayable to the
7: * screen!
8: *===*/
9:
10: #include <float.h>
11: #include <limits.h>
12: #include <stdio.h>
13:
14: int main(void)
15: {
16: unsigned char ch;
17: int i;
18:
19: printf(“Enter a numeric value.”);
20: printf(“\nThis value will be translated to a character.”);
21: printf(“\n\n==> “);
22:
23: scanf(“%d”, &i);
24:
25: while(i < 0 || i > UCHAR_MAX)
26: {
27: printf(“\n\nNot a valid value for a character.”);
28: printf(“\nEnter a value from 0 to %d ==> “, UCHAR_MAX);
29:
30: scanf(“%d”, &i);
31: }
32: ch = (char) i;
33:
34: printf(“\n\n%d is character %c”, ch, ch);
35:
36: return;
37: }

Analysis

151

5

Enter a numeric value.
This value will be translated to a character.

==> 5000

Not a valid value for a character.
Enter a value from 0 to 255 ==> 69

69 is character E

This listing shows the UCHAR_MAX constant in action. The first new item you
should notice is the includes in lines 10 and 11. As stated earlier, these two
include files contain the defined constants. If you are questioning the need for

FLOAT.H to be included in line 10, then you’re doing well. Because none of the
decimal point constants are being used, the FLOAT.H header file is not needed. Line
11, however, is needed. This is the header file that contains the definition of UCHAR_MAX
that is used later in the listing.

Lines 16 and 17 declare the variables that will be used by the listing. An unsigned
character, ch, is used along with an integer variable, i. When the variables are declared,
several print statements are issued to prompt the user for a number. Notice that this
number is entered into an integer. Because an integer is usually capable of holding a
larger number, it is used for the input. If a character variable were used, a number that
was too large would wrap to a number that fits a character variable. This can easily be
seen by changing the i in line 23 to ch.

Line 25 uses the defined constant to see if the entered number is greater than the
maximum for an unsigned character. We are comparing to the maximum for an
unsigned character rather than an integer because the program’s purpose is to print
a character, not an integer. If the entered value isn’t valid for a character (and that is
an unsigned character), then the user is told the proper values that can be entered (line
28) and is asked to enter a valid value.

Line 32 casts the integer to a character value. In a more complex program, you may
find it’s easier to switch to the character variable than to continue with the integer.
This can help to prevent reallocating a value that isn’t valid for a character into the
integer variable. For this program, the line that prints the resulting character, line 34,
could just as easily have used i rather than ch.

Classifying Numbers
There are several instances when you’ll want to know information about a variable.
For instance, you may want to know if the information is numeric, a control character,

Output

Analysis

152

Efficiency and Porting
DAYDAY

5

Type

an uppercase character, or any of nearly a dozen different classifications. There are two
different ways to check some of these classifications. Consider Listing 5.7, which
demonstrates one way of determining if a value stored in a character is a letter of the
alphabet.

Listing 5.7. Is the character an alphabetic letter?

1: /* Program: list0509.c
2: * Author: Bradley L. Jones
3: * Purpose: This program may not be portable due to the
4: * way it uses character values.
5: *===*/
6:
7: int main(void)
8: {
9: unsigned char x = 0;
10: char trash[256]; /* used to remove extra keys */
11: while(x != ‘Q’ && x != ‘q’)
12: {
13: printf(“\n\nEnter a character (Q to quit) ==> “);
14:
15: x = getchar();
16:
17: if(x >= ‘A’ && x <= ‘Z’)
18: {
19: printf(“\n\n%c is a letter of the alphabet!”, x);
20: printf(“\n%c is an uppercase letter!”, x);
21: }
22: else
23: {
24: if(x >= ‘a’ && x <= ‘z’)
25: {
26: printf(“\n\n%c is a letter of the alphabet!”, x);
27: printf(“\n%c is an lowercase letter!”, x);
28: }
29: else
30: {
31: printf(“\n\n%c is not a letter of the alphabet!”, x);
32: }
33: }
34: gets(trash); /* eliminates enter key */
35: }
36: printf(“\n\nThank you for playing!”);
37: return;
38: }

153

5

Enter a character (Q to quit) ==> A

A is a letter of the alphabet!
A is an uppercase letter!

Enter a character (Q to quit) ==> g

g is a letter of the alphabet!
g is an lowercase letter!

Enter a character (Q to quit) ==> 1

1 is not a letter of the alphabet!

Enter a character (Q to quit) ==> *

* is not a letter of the alphabet!

Enter a character (Q to quit) ==> q

q is a letter of the alphabet!
q is an lowercase letter!

Thank you for playing!

This program checks to see if a letter is between the uppercase letter A and the
uppercase letter Z. In addition, it checks to see if it is between the lowercase a
and the lowercase z. If x is between one of these two ranges, then you would think

you could assume that the letter is alphabetic. This is a bad assumption! There is not
a standard for the order in which characters are stored. If you are using the ASCII
character set, you can get away with using the character ranges; however, your
program isn’t guaranteed portability. To guarantee portability, you should use a
character classification function.

There are several character classification functions. Each is listed in Table 5.6 with
what it checks for. These functions will return a zero if the given character doesn’t meet
its check; otherwise it will return a value other than zero.

Table 5.6. The character classification functions.

Function Purpose

isalnum() Checks to see if the character is alphanumeric.

isalpha() Checks to see if the character is alphabetic.

iscntrl() Checks to see if the character is a control character.

Output

Analysis

continues

154

Efficiency and Porting
DAYDAY

5

Type

isdigit() Checks to see if the character is a decimal digit.

isgraph() Checks to see if the character is printable (space is an
exception).

islower() Checks to see if the character is lowercase.

isprint() Checks to see if the character is printable.

ispunct() Checks to see if the character is a punctuation character.

isspace() Checks to see if the character is a whitespace character.

isupper() Checks to see if the character is uppercase.

isxdigit() Checks to see if the character is a hexadecimal digit.

With the exception of an equality check, you should never compare the values of two
different characters. For example, you could check to see if the value of a character
variable is equal to ‘A’, but you wouldn’t want to check to see if the value of a character
is greater than ‘A’.

if(X > ‘A’) /* NOT PORTABLE!! */
...

if(X == ‘A’) /* PORTABLE */
...

Listing 5.8 is a rewrite of Listing 5.7. Instead of using range checks, the appropriate
character classification values are used. Listing 5.8 is a much more portable program.

Listing 5.8. Using character classification functions.

1: /* Program: list0510.c
2: * Author: Bradley L. Jones
3: * Purpose: This program is an alternative approach to
4: * the same task accomplished in Listing 5.9.
5: * This program has a higher degree of portability!
6: *==*/
7:
8: #include <ctype.h>
9:
10: int main(void)
11: {

Table 5.6. continued

Function Purpose

155

5

12: unsigned char x = 0;
13: char trash[256]; /* use to flush extra keys */
14: while(x != ‘Q’ && x != ‘q’)
15: {
16: printf(“\n\nEnter a character (Q to quit) ==> “);
17:
18: x = getchar();
19:
20: if(isalpha(x))
21: {
22: printf(“\n\n%c is a letter of the alphabet!”, x);
23: if(isupper(x))
24: {
25: printf(“\n%c is an uppercase letter!”, x);
26: }
27: else
28: {
29: printf(“\n%c is an lowercase letter!”, x);
30: }
31: }
32: else
33: {
34: printf(“\n\n%c is not a letter of the alphabet!”, x);
35: }
36: gets(trash); /* get extra keys */
37: }
38: printf(“\n\nThank you for playing!”);
39: return;
40: }

Enter a character (Q to quit) ==> z

z is a letter of the alphabet!
z is an lowercase letter!

Enter a character (Q to quit) ==> T

T is a letter of the alphabet!
T is an uppercase letter!

Enter a character (Q to quit) ==> #

is not a letter of the alphabet!

Enter a character (Q to quit) ==> 7

7 is not a letter of the alphabet!

Enter a character (Q to quit) ==> Q

Output

156

Efficiency and Porting
DAYDAY

5

Q is a letter of the alphabet!
Q is an uppercase letter!

Thank you for playing!

The outcome should look virtually identical to Listing 5.9—assuming that you
ran the program with the same values. This time, instead of using range checks,
the character classification functions were used. Notice that line 8 includes the

CTYPE.H header file. When this is included, the classification functions are ready to
go. Line 20 uses the isalpha() function to ensure that the character entered is a letter
of the alphabet. If it is, a message is printed in line 22 stating as much. Line 23 then
checks to see if the character is uppercase with the isupper() function. If x is an
uppercase character, then a message is printed in line 25, otherwise the message in line
29 is printed. If the letter was not an alphabet letter, then a message is printed in line
35. Because the while loop starts in line 14, the program continues until Q or q is
pressed. You might think line 14 detracts from the portability of this program, but that
is incorrect. Remember that equality checks for characters are portable, and non-
equality checks aren’t portable. “Not equal to” and “equal to” are both equality checks.

DO DON’T
DON’T use numeric values when determining maximums for variables. Use
the defined constants if you are writing a portable program.

DON’T assume that the letter A comes before the letter B if you are writing
a portable program.

DO use the character classification functions when possible.

DO remember that “!=” is considered an equality check.

Converting a Character’s Case
A common practice in programming is to convert the case of a character. Many people
write a function similar to the following:

char conv_to_upper(char x)
{
 if(x >= ‘a’ && x <= ‘z’)
 {
 x -= 32;
 }
 return(x)
}

Analysis

157

5

As you saw earlier, the if statement may not be portable. The following is an update
function with the if statement updated to the portable functions presented in the
previous section:

char conv_to_upper(char x)
{
 if(isalpha(x) && islower(x))
 {
 x -= 32;
 }
 return(x)
}

This second example is better than the previous listing in terms of portability;
however, it still isn’t completely portable. This function makes the assumption that
the uppercase letters are a numeric value that is 32 less than the lowercase letters. This
is true if the ASCII character set is used. In the ASCII character set, ‘A’ + 32 equals
‘a’; however, this is not necessarily true on every system. Particularly, it is untrue on
non-ASCII character systems.

There are two ANSI standard functions that take care of switching the case of a
character. The toupper() function converts a lowercase character to uppercase; the
lowercase() function converts an uppercase character to lowercase. The previous
function rewritten would look as follows:

toupper();

As you can see, this is a function that already exists. In addition, this function is defined
by ANSI standards, so it should be portable.

Portable Structures and Unions
When using structures and unions, care must also be exercised if portability is a
concern. Byte alignment and the order in which members are stored are two areas of
incompatibility that can occur when working with these constructs.

Byte alignment, which was discussed on Day 2, is an important factor in the
portability of a structure. A program can’t assume that the byte alignment will be the
same or that it will be on or off. The members could be aligned on every 2 bytes,
4 bytes, or 8 bytes. You cannot assume to know.

When reading or writing structures, you must be cautious. It’s best to never use a literal
constant for the size of a structure or union. If you are reading or writing structures
to a file, the file probably won’t be portable. This means you only need to concentrate

158

Efficiency and Porting
DAYDAY

5

Type

on making the program portable. The program would then need to read and write the
data files specific to the machine compiled on. The following is an example of a read
statement that would be portable:

fread(&the_struct, sizeof(the_struct), 1, filepointer);

As you can see, the sizeof command is used instead of a literal. Regardless of whether
byte alignment is on or off, the correct number of bytes will be read.

When you create a structure, you may assume that the members will be stored in the
order in which they are listed. In fact, many of the figures of structures that were
presented on Day 2 made this assumption. This assumption is not guaranteed. There
isn’t a standard that states that a certain order must be followed. Because of this, you
can’t make assumptions about the order of information within a structure. Listing 5.9
shows an incomplete program that makes such an assumption.

Listing 5.9. A program that may not be portable.

1: /* Program: list0511.c
2: * Author: Bradley L. Jones
3: * NOTE: THIS IS AN INCOMPLETE PROGRAM
4: * Purpose: Demonstrates potentially non-portable code!
5: *==*/
6:
7: struct date
8: {
9: int year; /* year in YYYY format */
10: char month; /* month in MM format */
11: char day; /* day in DD format */
12: }
13:
14: int main(void)
15: {
16: struct date today, birthday;
17:
18: set_up_values(&today, &birthday);
19:
20: if (*(long *)&today == * (long *)&birthday)
21: {
22: do_birthday_function();
23: }
24: }

This program doesn’t actually run. This program would accept two dates, one
for today’s date and one for a birthdate. It then compares the values of the two
dates in line 20 to see if they are equal. If they are, the program completes the

do_birthday_function().

Analysis

159

5

As you probably guessed, line 20 may not be portable because it takes the value stored
in the today structure and compares it to the value stored in the birthday structure
This is a tricky way to compare the two structures. Because the structure members are
stored in the order in which they should be compared, it’s easier to compare the
complete values of the entire structure instead of manipulating each member. This
makes the assumption that a date would be stored in year, month, day order as
declared in the date structure. Two dates—such as 1991, 12, 25 and 1993, 08, 01—
could be compared as 19911225 and 19930801.

Because the compiler isn’t required to store the date structure in year, month, day
order, this program wouldn’t be guaranteed as portable. A second portability issue also
exists. This program assumes that the total size of the structure (2 characters and an
integer) is equal to the size of a long. This is not guaranteed.

Preprocessor Directives
There are several preprocessor directives that have been defined in the ANSI
standards. You use two of these all the time. They are #include and #define. There
are several other preprocessor directives that are in the ANSI standards. The additional
preprocessor directives that are available under the ANSI guidelines are listed in
Table 5.7.

Table 5.7. ANSI standard preprocessor directives.

#define #if

#elif #else

#endif #error

#ifdef #ifndef

#include #pragma

Later today, you will see an example of using some of the preprocessor directives to
create programs with compiler-specific code and still retain portability.

Using Predefined Constants
Every compiler comes with predefined constants. A majority of these are typically
compiler specific. This means that there is a good chance that they won’t be portable
from one compiler to the next. There are, however, several predefined constants that
are defined in the ANSI standards. Some of these constants are:

160

Efficiency and Porting
DAYDAY

5

__DATE_ _ This is replaced by the date at the time the program is
compiled. The date is in the form of a literal string (text
enclosed in double quotes). The format is “Mmm DD,
YYYY”. For example, January 1, 1998 would be “Jan 1,
1998”.

__FILE_ _ This is replaced with the name of the source file at the time
of compilation. This will be in the form of a literal string.

__LINE_ _ This will be replaced with the number of the line on which
__LINE_ _ appears in the source code. This will be a nu-
meric decimal value.

__STDC_ _ This literal will be defined as 1 if the source file is compiled
with the ANSI standard. If the source file wasn’t compiled
with the ANSI flag set, this value will be undefined.

__TIME_ _ This is replaced by the time that the program is compiled.
This time is in the form of a literal string (text enclosed in
double quotes). The format is “HH:MM:SS”. An example
would be “12:15:03”.

Note: The following listing needs to be compiled with the ANSI compat-
ibility flag on. This is usually set by passing an additional parameter when
compiling. For example, with Borland’s Turbo C, you would enter the
following:

TCC -A LIST0512.C

The -A tells the compiler to compile as an ANSI-compatible source file. If
you don’t compile with the ANSI compatibility flag, you’ll get an error
similar to the following:

list0512.c:

Error list0512.c 24: Undefined symbol ‘__STDC_ _’ in function

main

*** 1 errors in Compile ***

The best way to understand the predefined constants is to see them in action. Several
of the predefined ANSI constants are presented in Listing 5.10.

161

5

Type Listing 5.10. The predefined ANSI constants in action.

1: /* Program: list0510.c
2: * Author: Bradley L. Jones
3: * Purpose: This program demonstrates the values printed
4: * by some of the pre-defined identifiers.
5: * Note: In order for this to compile, the ANSI standard
6: * compiler switch must be set.
7: *===*/
8:
9: #include <string.h>
10:
11: int main(void)
12: {
13: printf(“\n\nCurrently at line %d”, _ _LINE_ _);
14:
15: printf(“\n\nThe value of _ _DATE__ is: “);
16: printf(_ _DATE__);
17:
18: printf(“\n\nThe value of _ _TIME__ is: “);
19: printf(_ _TIME__);
20:
21: printf(“\n\nThe value of _ _LINE__ is: %d”, _ _LINE_ _);
22:
23: printf(“\n\nThe value of _ _STDC__ is 1 if ANSI compatibility
 is on”);
24: (__STDC_ _ == 1) ? printf(“\nANSI on”) : printf(“\nANSI off”);
25:
26: printf(“\n\nThe value of _ _FILE__ is: “);
27: printf(_ _FILE__);
28:
29: return;
30: }

Currently at line 13

The value of _ _DATE__ is: Nov 27 1993

The value of _ _TIME__ is: 10:14:03

The value of _ _LINE__ is: 21

The value of _ _STDC__ is 1 if ANSI compatibility is on
ANSI on

The value of _ _FILE__ is: list0512.c

Output

162

Efficiency and Porting
DAYDAY

5

Type

Listing 5.10 demonstrates the ANSI predefined constants by simply printing their
values using printf() function calls. Line 13 prints the value of _ _LINE__. As you can
see in the output, this is the value of 13. Line 16 prints the value of __DATE__. To show
that this is a simple string, the _ _DATE__ constant is passed as the only parameter to
printf(). Lines 15 and 16 could be printed as:

printf(“\n\nThe value of _ _DATE__ is: %s”, _ _DATE_ _);

Line 19 prints the _ _TIME__ constant. Like the date, this is printed as a separate string,
but could have been combined with the previous printf() statement. Line 24
determines the value of __STDC_ _. This is not a good line because if _ _STDC__ is
defined, ANSI is on. If it isn’t defined, the compiler will give an error and the program
won’t compile.

Line 27 wraps up the listing by printing the filename it had when it was compiled. If
you rename the executable, the value of __FILE_ _ will still be the original filename.

Using Non-ANSI Features in Portable Programs
A program can use non-ANSI-defined constants and other commands and still be
portable. This is accomplished by ensuring the constants are used only if compiled
with a compiler that supports the features used. Most compilers provide defined
constants that can be used to identify themselves. By setting up areas of the code that
are supportive for each of the compilers, you can create a portable program. Listing
5.11 demonstrates how this can be done.

Listing 5.11. A portable program with compiler specifics.

1: /* Program: list0511.c
2: * Author: Bradley L. Jones
3: * Purpose: This program demonstrates using defined
4: * constants for creating a portable program.
5: * Note: This program gets different results with
6: * different compilers.
7: *===*/
8:
9: #ifdef _WINDOWS
10:
11: #define STRING “DOING A WINDOWS PROGRAM!”
12:
13: #else
14:
15: #define STRING “NOT DOING A WINDOWS PROGRAM”
16:
17: #endif
18:
19: int main(void)

163

5

20: {
21: printf(“\n\n”) ;
22: printf(STRING);
23:
24: #ifdef _MSC_VER
25:
26: printf(“\n\nUsing a Microsoft compiler!”);
27: printf(“\n Your Compiler version is %s”, _MSC_VER);
28:
29: #endif
30:
31: #ifdef __TURBOC_ _
32:
33: printf(“\n\nUsing the Turbo C compiler!”);
34: printf(“\n Your compiler version is %x”, _ _TURBOC_ _);
35:
36: #endif
37:
38: #ifdef __BORLANDC_ _
39:
40: printf(“\n\nUsing a Borland compiler!”);
41:
42: #endif
43:
44: return(0);
45: }

NOT DOING A WINDOWS PROGRAM

Using the Turbo C compiler!
 Your compiler version is 300

NOT DOING A WINDOWS PROGRAM

Using a Borland compiler!

NOT DOING A WINDOWS PROGRAM

Using a Microsoft compiler!
 Your compiler version is >>

This listing takes advantage of defined constants to determine information
about the compiler being used. In line 9, the ifdef preprocessor directive is used.
This directive checks to see if the following constant has been defined. If the

constant has been defined, the statements following the ifdef are executed until an
endif preprocessor directive is reached. In the case of line 9, a determination of
whether _WINDOWS has been defined is made. An appropriate message is applied to the
constant STRING. Line 22 then prints this string, which states whether this listing has
been compiled as a Windows program or not.

Output

Analysis

Borland

Microsoft

Borland

164

Efficiency and Porting
DAYDAY

5

Line 24 checks to see if _MSC_VER has been defined. _MSC_VER is a constant that contains
the version number of a Microsoft compiler. If a compiler other than a Microsoft
compiler is used, this constant won’t be defined. If a Microsoft compiler is used, this
will be defined with the version number of the compiler. Line 27 will print this
compiler version number after line 26 prints a message stating that a Microsoft
compiler was used.

Lines 31 through 36 and lines 38 through 42 operate in similar manners. They check
to see if Borland’s Turbo C or Borland’s professional compiler were used. The
appropriate message is printed based on these constants.

As you can see, this program determines what compiler is being used by checking the
defined constants. The object of the program is the same regardless of which compiler
is used—print a message stating which compiler is being used. If you are aware of the
systems that you will be porting, you can put compiler-specific commands into
the code. If you do use compiler-specific commands, you should ensure that the
appropriate code is provided for each compiler.

ANSI Standard Header Files
Several header files that can be included are set by the ANSI standards. It’s good to
know which header files are ANSI standard since these can be used in creating portable
programs. Appendix E contains the ANSI header files along with a list of their
functions.

Summary
Today, you were exposed to a great deal of material. This information centered around
efficiency and portability. Efficiency needs to be weighed against maintainability. It’s
better to write code that can be easily maintained even if it operates a few nano-seconds
slower. C is one of the most portable languages—if not the most portable language.
Portability doesn’t happen by accident. ANSI standards have been created to ensure
that C programs can be ported from one compiler to another and from one computer
system to another. There are several areas to consider when writing portable code.
These areas include variable case, which character set to use, using portable numerics,
ensuring variable sizes, comparing characters, using structures and unions, and using
preprocessor directives and preprocessor constants. The day ended with a discussion
of how to incorporate compiler specifics into a portable program.

165

5

Q&A
Q How do you write portable graphics programs?

A ANSI does not define any real standards for programming graphics. With
graphics programming being more machine dependent than other program-
ming areas, it can be somewhat difficult to write portable graphics programs.

Q Should you always worry about portability?

A No, it’s not always necessary to consider portability. Some programs that
you write will only be used by you on the system you are using. In addition,
some programs won’t be ported to a different computer system. Because of
this, some nonportable functions, such as system(), can be used that
wouldn’t be used in portable programs.

Q Do comments make a program less efficient?

A Comments are stripped out by the compiler. Because of this, they don’t hurt
a program. If anything, comments add to the maintainability of a program.
You should always use comments where they can make the code clearer.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned.

Quiz
1. Which is more important—efficiency or maintainability?

2. What is the numeric value of the letter a?

3. What is guaranteed to be the largest unsigned character value on your
system?

4. What does ANSI stand for?

5. Are the following variable names valid in the same C program?

int firstname,

 FIRSTNAME,

 FirstName,

 Firstname;

166

Efficiency and Porting
DAYDAY

5

6. What does isalpha() do?

7. What does isdigit() do?

8. Why would you want to use functions such as isalpha() and isdigit()?

9. Can structures be written to disk without worrying about portability?

10. Can _ _TIME__ be used in a printf() statement to print the current time in a
program? For example:

printf(“The Current Time is: %s”, _ _TIME__);

Exercises
1. BUG BUSTER: What, if anything, is wrong with the following function?

void Print_error(char *msg)

{

 static int ctr = 0,

 CTR = 0;

 printf(“\n”);

 for(ctr = 0; ctr < 60; ctr++)

 {

 printf(“*”);

 }

 printf(“\nError %d, %s - %d: %s.\n”, CTR, _ _FILE__, _ _LINE_ _,

msg);

 for(ctr = 0; ctr < 60; ctr++)

 {

 printf(“*”);

 }

}

2. Rewrite a listing in this chapter and remove all the unneeded spaces. Does
the listing still work? Is it smaller than the original listing?

3. Write a function that verifies that a character is a vowel.

4. Write a function that returns 0 if it receives a character that isn’t a letter of
the alphabet, 1 if it is an uppercase letter, and 2 if it is a lowercase letter.
Keep the function as portable as possible.

167

5

5. ON YOUR OWN: Understand your compiler. Determine what flags must
be set to ignore variable case, allow for byte alignment, and guarantee ANSI
compatibility.

6. Is the following code portable?

void list_a_file(char *file_name)

{

 system(“TYPE “ file_name);

}

7. Is the following code portable?

int to_upper(int x)

{

 if(x >= ‘a’ && x <= ‘z’)

 {

 toupper(x);

 }

 return(x);

}

168

Efficiency and Porting
DAYDAY

5

