Using Libraries

WEEK

202

Using Libraries

As you create more and more useful functions, it may seem to become harder and
harder to get them all linked together. C offers a way of grouping all of your useful
functions into libraries. Today you learn:

0 How to work with multiple source files.
How #include files operate.

What libraries are.

Why libraries are important.

How to create a library.

How to use the library you create.

o o o o o g

A note about libraries you are already using.

Review of Program Creation

At this point in your C learning experience, you may or may not have written
programs using more than one C source file. A C source file is a file that contains
programming instructions (code). As your programs get larger, you reach a point
where it is best to use more than one source file.

Expert Tip: It is up to each person to determine when code should be
broken into multiple source files. When the code gets beyond 250

4 lines, as a rule, you may want to begin breaking it into separate files. It

is best to have only related functions in a file. For an application, you
may choose to put the screen functions in one file, the database
functions in a second file, and the rest of the functions in a third file.

Using one or more source files that you create, you can begin the process of creating
an executable file. Typically, these end with the extension of .C. Header files, which
are included in the source files, typically have an extension of .H. Using the compiler,
header files are converted to object files (.OBJ). The objects are then linked with
library files (.LIB) to create executable files (either .EXE or .COM). Figure 7.1 shows
this process.

Header
Source files
Code l l

Compiler

Object
files

Libraries
———| Linker

l

Executable
Program

BL

Figure 7.1. The creation of an executable file.

How To Work with
Multiple Source Files

As you begin writing larger programs, or as you begin to write functions that may be
reusable, you should start using multiple source files. There are several reasons for
using separate source files. The first is size. Programs can get very large. Having
multiple sourcefiles over 20K isnot uncommon in “real-world” applications. In order
to make maintaining files easier, most programmers break them into separate files that
contain similar functions. For example, a programmer may set up three different
source files for alarge application. The programmer may putall of the screen functions
in one file, all of the edit functions in another, and all the remaining code in a final
source file. Figure 7.2 shows the creation of this executable file.

203

204

Using Libraries

[

Header
Source flles
Code 1 I
edits.c Compiler .
screen.c / \ stdio.h
prog.c string.h

malloc.h

Object
files

edits.obj

"~ screen.obj

l prog.obj
Libraries
=——(Linker

editslibt l
graphics.lib

Executable
Program

prog.exe

Figure 7.2. The creation of an executable file with multiple source files.

How To Include Header Files
with #include

Header files are used in conjunction with the source files (.C). You have seen header
files included in virtually every program in this book so far. These header files are
generally included as follows:

#include <stdio.h>

Inthisexample, stdio.h is the name of the header file. The #include isa preprocessor
directive. This directive causes the following filename to be included in the current
source file—hence the name. After the inclusion, the code in the header file becomes
a part of the original source file. The following listings help to illustrate this point.
These should all be in the same directory when you compile.

=l
)
D

Listing 7.1. Using include files.

1: /* Program: list0701.h

2: * Author: Bradley L. Jones

3: * Purpose: This is an include file with half a program.

4: * */
5:

6: #include <stdio.h>

7:

8: int main(void)

9: {

10:

11:
12:
13:

printf(“\nHELLO “);

<
)
D

Listing 7.2. A second header file.

1: /* Program: list0702.h
2: * Author: Bradley L. Jones
3: * Purpose: This is another include file with the second
4: * half of a program.
5: * */
6:
7:
8: printf(“WORLDI\n"");
9:
10: return;
11: }
Type Listing 7.3. The source file.
1: /* Program: l1ist0703.c
2: * Author: Bradley L. Jones
3: * Purpose: This is a program to demonstrate include
4: * files.
5: * >/
6:
7: #include “list0701.h”
8: #include “list0702._h"
9:
10:

e

&)

=
=S

=

L :
=
=.

Note: To compile the previous listing, you need to only compile Listing
7.3 (LIST0703.C).

HELLO WORLD!

When LIST0703.C is compiled, the other two files are automatically included.
This is obvious from the fact that the program runs! Listing 7.3 only contains
the code for including the other two files. Listing 7.1 contains only the first half

205

206

Using Libraries

of the code needed to produce the output. Line 11 of Listing 7.1 prints out the HELLO
portion of the output. Listing 7.2 contains the code to printworLb! Notice that Listing
7.3 does not appear to contain any relevant code at all. Lines 1 to 5 are simply
comments and lines 7 and 8 are the includes.

The way the files in lines 7 and 8 of Listing 7.3 are included is slightly different than
the way that you have been including files up until now. In addition, these lines are
different than the include in line 6 of Listing 7.1. Instead of using <> around the file
to be included, double quotes are used. Whether you use <> or quotes makes a
difference in what is included. Actually, the characters surrounding the included
filename signal to the compiler where to look for the include file. Double quotes tell
the compiler to look in the current directory for the include file first. The <> characters
tell the compiler to start by looking in the include directory that was set up with the
compiler.

Listing 7.4 is an equivalent listing to the previous three listings. This listing replaces
the include statements in Listing 7.3 with the corresponding code listings. The pre-
compiler would combine these listings into a listing similar to the following.

ﬂpe Listing 7.4. Partially precompiled version of Listing 7.3.
1: /* Program: 1ist0703.c
2: * Author: Bradley L. Jones
3: * Purpose: This is a program to demonstrate include
4: * files.
5: * */
6:
7: /* Program: list0701.h
8: * Author: Bradley L. Jones
9: * Purpose: This is an include file with half a program.
10: * */
11:
12: #include <stdio.h>
13:
14: int main(void)
15: {
16:
17: printf(“\nHELLO “);
18:
19:
20:

21: /* Program: [l1ist0702.h
22: * Author: Bradley L. Jones

23: * Purpose: This is another include file with the second

24: * half of a program.

25: * */
26:

27:

28: printf(“WORLDI\n”*);
29:

30: return;

31: %}

()quu HELLO WORLD!

Lines 7 to 17 are an inserted copy of Listing 7.1. These lines of code replace the

Ana|y5| #include directivein Listing 7.3. Lines 21 to 31 are Listing 7.2. Again these lines

~ have replaced the #include directive used in line 8 of Listing 7.3. This listing
does not accurately reflect how the preprocessor would change the includes in line 12
also. This header file, stdio.h, would also be expanded out with the code in that file.
This file is too long to add to this listing. In addition, each compiler comes with its
own version of this file.

Note: The preceding listings were presented as a demonstration of how
the #include directive works. The #inciude directories should not be
used in the manner presented.

What Libraries Are

What is a library? A library is a set of functions that have been grouped together. A
library allows all of the functions to be grouped into a single file. Any subset of the
functions can be used by linking them with your programs.

Libraries enable you to share common functions. In fact, many—if not most—of the
functions that you use in your programs are in libraries that were provided with your
compiler. This includes functions such as printf(), scanf(), strcmp(), malloc(Q),
and more. Most compilers come with a library reference manual that describes the
usage of each function within the library. Notice that you don’t need the source code
for these functions. In fact, you don’t really have to know how the internals of these
functions work. What you do need to know is how to call them and what values they
return. For instance, when using a function such as puts (), you need to know that a
constant character pointer (a string) is passed to it. You also need to know that the
function returns an integer. It is also beneficial to know what values the integer can

207

Using Libraries

be and what each value represents. Whether puts () is written with a for loop or using
system calls is irrelevant to its use. You can use the function without knowing its

internals.
Review Tip: It is not required that you use a return value from a
\ function. Some functions, such as scanf(), are used without regard to
) their return value.

You are not limited to the libraries the compiler comes with. You can create your own
libraries of useful functions. Several of the later chapters in this book will have you
create libraries of functions that will be useful in many of your applications. In
addition, once you have created a library, you can give it to others to link with their
programs. It is not uncommon to create several of your own libraries. In addition,
most major programming shops have several of their own libraries.

In addition to creating your own libraries or getting them from your friends, you can
also purchase libraries. The phrase “don’t reinvent the wheel” is true for C program-
mers. If you are looking to get a quick jump on developing large scale applications,
then the decision to purchase libraries should be considered. There are libraries
available to do a number of tasks ranging from accessing or creating standard database
formats to doing high-resolution graphics.

Note: Although “reinventing the wheel” is not necessarily good, it is
important for learning. Many of the topics covered in this book could be
avoided by purchasing libraries. However, by covering these topics, you
will better understand how many of the functions work.

Working with Libraries

Virtually every C compiler comes with the capability to create libraries. This is
invariably done with a library program. You will need to consult your computer’s
manuals to determine its library program.

Mictosoft If you are using Microsoft, the program used to manipulate libraries is LIB.

208

If you are using a Borland compiler, your library program is TLIB. Borland

This book will use LIB from this point on. If you are using the Borland compiler, you
will simply need to type TLIB in place of LIB. If you are using a compiler other than
Microsoft’s or Borland’s, then you will need to consult your manuals for compatibil-
ity. Other compilers should have library functions that operate in a similar manner.

There are several tasks that may be done to manipulate libraries. Some of the functions
you can perform on libraries include:

0 Create a new library.

O List functions in a library.

O Add a function to a library.

0 Update or replace a function in a library.
0O Remove a function from a library.

The next few sections will cover each of these. In doing so, the following listings will
be used. Enter these four listings and save them under their corresponding names.

Note: There is no output for each of the following listings. As you will
see, these listings contain only individual functions. They are not com-
plete “stand-alone” listings. They will be used in the following library
manipulations.

Listing 7.5. A state edit.

/* Program: State.c

Author: Bradley L. Jones

Purpose: Validate a state abbreviation

Note: Valid states are:
AL, AK, AZ, CA, CO, CT, DE, FL, GA,
HI, 1A, ID, IL, IN, KS, KY, LA, MA,
MD, ME, MI, MN, MO, MS, MT, NB, NC,
ND, NE, NH, NV, NY, OH, OK, OR, PA,
Rl, SC, SD, TN, UT, VT, WS, Wv, Wy,

Return: One of the following is returned:
0 - Valid state
1 - Invalid state

*
*
*
*
*
*
*
*
*
*
*
*

*/

&=
P RPRRPRPPRPOONOOAODNWNLERE g
R@R BT

continues

209

210

Using Libraries

Listing 7.5. continued

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

#include <string.h>
#include <stdio.h>

int is_valid_state(char *state)

char all_states[101] = {“ALAKAZCACOCTDEFLGA™
“HI TAID ILINKSKYLAMA™
“MDMEM I MNMOMSMTNBNC””
“NDNENHNVNYOHOKORPA™
“RISCSDTNUTVTWSWVWY™” };
int ctr;

for(ctr = 0; ctr < 100; ctr+=2)

{
if (strncmp(all_states+ctr, state, 2)==0)

return(0); /* found state */
}

}
return(l);

35 3}

b

This function is an edit function. The comments in the first few lines of this
function provide most of the details of what the function will do. As you see, the
information in these comments completely documents the function’s purpose

and use. This function edits a string that is passed in to verify that it is a valid two-digit
state abbreviation. A for loop starting in line 27 is used to move an offset through the
all_states array. In line 29, each set of two characters of the all_states array is
compared to the two characters passed to the function. If a match is found, the state
is considered valid and the value of O is returned in line 31. If the state is not found,
then the value of 1 is returned in line 34.

Like the state function there are several other edits that only allow for specific values.
Listing 7.6 presents a function to verify the sex code.

Tyoe!

Listing 7.6. A sex code edit.

O~NO U WNPE

/* Program: Sex.c
* Author: Bradley L. Jones

* Purpose: Validate a sex code

Note: Valid sex code. Valid values are:
M or m - Male
F or ¥ - Female
U or u - Other

Return: One of the following is returned:

Fox X X %

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

*

0 -
1 -

Valid code
Invalid code

*/

int is_valid_sex(char sex_code)

{

}

int rv = 0;

switch(sex_code)

{

case
case
case
case
case
case

<g>-
<f-
M-

m-:
<y -
“u’-

default:

}

return(rv);

rv = 0;
break;
rv =1;

b

This edit function verifies that the character received is a valid abbreviation for
a sex code. The assumed valid values are M for male, F for female, and U for
unknown. (This is the "90s!) This time a switch statement in line 17 is used to
determine if the values are valid. If not, 1 is again returned. If the sex_code value is
valid, then 0 is returned. You should notice that lines 20, 22, and 24 include the
lowercase letters. This helps to make the edit more complete. Following in listing 7.7
is a more complex edit for a date.

ﬂpe Listing 7.7. A date edit.
1: /* Program: date.c
2: * Author: Bradley L. Jones
3: * Purpose: Pseudo-validate a date
4: * Note: This is not a very complete date edit.
5: * Return: One of the following is returned:
6: * +0 - Valid date
7: * -1 - Invalid day
8: * -2 - Invalid month
9: * -3 - Invalid year
10: * */
11:
12: int is_valid_date(int month, int day, int year)
13: {
14: int rv = 0;

continues

211

Using Libraries

Listing 7.7. continued

15:

16: if(day <1 || day > 31)
17: {

18: rv = -1;

19: }

20: else

21: {

22: if(month < 1 |] month > 12)
23: {

24: rv = -2;

25: 3}

26: else

27: {

28: if(year < 1 || year > 2200)
29: {

30: rv = -3;

31: }

32: 3}

33: }

34: return(rv);

35: %}

validates a date. It receives three integers—month, day, and year in line 12. This

—edit does not fully edit the date. In line 16, it verifies that the day is 31 or less.

In line 22, the edit checks to see if the month is from 1 to 12. In line 28, it checks to

see that the year is a positive number less than 2200. Why 2200? Why not! It is just

an arbitrary number that is higher than any date that would be used in any of my
systems. You can use whatever cap you feel is adequate.

Analw Thisis a third edit. As you can see, this is not as detailed as it could be. This edit

If the date values pass all of these checks, then 0 is returned to the calling function.
Ifall the values don't pass, a negative number is returned signifying what was in error.
Notice that three different negative numbers are being returned. A program calling
the is_valid_date() function will be able to determine what was wrong. Listing 7.8
presents a function that uses the is_valid_date() function.

ﬂpe Listing 7.8. A birthdate edit.

1: /* Program: bdate.c
2: * Author: Bradley L. Jones
3: * Purpose: Pseudo-validate a birthdate
4: * Note: This is not a very complete date edit.
5: * Return: One of the following is returned:
- *
"o

0 - Valid date

212

-1 - Invalid day

-2 - Invalid month

-3 - Invalid year

-4 - Invalid birthday (valid date > 1995)

[y
o
% % ox X

*/

14: int is_valid_birthdate(int month, int day, int year)
15: {
16: int rv = 0;

18: rv = is_valid_date(month, day, year);

20: ifC rv>=0)

21: {

22: if(year >= 1995)
23: {

24: rv = -4;

25: 3}

26: }

27: return(rv);

m This edit is a little more specific to applications. Like the date edit, it is not as
yS' complete as it could be. The reason for this simplicity is that this function is for

use in describing library functions, not to emphasize editing values—although
properly written edits are important.

The birthdate edit is a more specific version of the date edit. In fact, a part of the
birthdate edit is to call the date edit (line 18). If the date edit in line 18 passes, then
the birthdate edit verifies in line 22 that the date was before January 1, 1995. This is
done by simply checking the year. If the year is equal to or greater than 1995, then the
date is equal to or greater than January 1, 1995. A more appropriate check would be
to verify that the date is before today’s date. After all, you aren’t born yet if your
birthdate istomorrow. Line 24 adds an additional error code to be returned if the date
is valid but it is after January 1, 1995. If the date is invalid, the value returned from
the date edit is returned. Notice that this edit requires the date edit to be complete.

How To Create a Library

Now that you have a set of edit functions, you will want to use them. The following
program, presented in Listing 7.9 and Listing 7.10, uses the four edits that have been
created. To create a program from multiple source files, you simply include them all
when you compile. If you were using Borland’s Turbo compiler, you could type:

213

Using Libraries

TCC 1ist0709.c state.c sex.c date.c bdate.c

Thefinal outcome of this compilation would be an executable file called list0709.EXE.

ﬂpe Listing 7.9. Using the edit functions.
1: /* Program: 1ist0709.c
2: * Author: Bradley L. Jones
3: * Purpose: This is a program to demonstrate the use of
4: * the edit functions.
5: * */
6:
7: #include <stdio.h>
8: #include “edits.h”
9:
10: void main(void)
11: {
12: int rv;
13:
14: printf(“\n\nUsing the edits:”);
15:
16: printf(*\n\nUsing the state edit:");
17: rv = is_valid_state(“xx™);
18: printf(“\n State = xx, return value: %d”, rv);
19: rv = is_valid_state(“IN™);
20: printf(“\n State = IN, return value: %d”, rv);
21
22: printf(*“\n\nUsing the sex code edit:);
23: rv = is_valid_sex(“x”);
24: printf(“\n Sex code = x, return value: %d”, rv);
25: rv = is_valid_sex(“F”);
26: printf(“\n Sex code = F, return value: %d”, rv);
27:
28: printf(*\n\nUsing the date code edit:”);
29: rv = is_valid_date(8, 11, 1812);
30: printf(“\n Month: 8\n Day: 117);
31: printf(*\n Year: 1812, return value: %d”, rv);
32: rv = is_valid_date(31, 11, 1812);
33: printf(“\n Month: 31\n Day: 117);
34: printf(*\n Year: 1812, return value: %d”, rv);
35
36: printf(“\n\nUsing the birthdate code edit:”);
37: rv = is_valid_birthdate(8, 11, 1999);
38: printf(“\n Month: 8\n Day: 11);
39: printf(“\n Year: 1812, return value: %d”, rv);
40: rv = is_valid_date(8, 11, 1812);
41: printf(“\n Month: 31\n Day: 117);
42: printf(“\n Year: 1812, return value: %d”, rv);
43: }

214

\<I
e
D

Listing 7.10. A

header file for the edit functions.

©CoO~NOUA WNLPE

/* edits.h
* Prototypes for

*

EDITS library

*/

#if defined(__EDITS_H)
/* this file has already been included */

#else
#define __EDITS_H

int is_valid_state(char *state);

int is_valid_sex(

#endif

char sex_code);

int is_valid_date(int month, int day, int year);
int is_valid_birthdate(int month, int day, int year);

Using the edits:

Using the state ed
State
State

it:

XX, return value: 0
IN, return value: 1

Using the sex code edit:

Sex code = X,
Sex code = F,

return value: 0
return value: 1

Using the date code edit:

Month: 8
Day: 11
Year: 1812,
Month: 31
Day: 11

Year: 1812,

Using the birthdate code edit:

Month: 8
Day: 11
Year: 1812,
Month: 31
Day: 11

Year: 1812,

return value: 0

return value: -2

return value: -4

return value: 0

If additional listings are created that call these edit functions, you could include
each of the appropriate edits during their compilations. This would be okay, but
linking in asingle library rather than a bunch of source files makes using the edits

much easier.

215

216

Using Libraries

Listing 7.9 should not offer any surprises. Line 8 includes a header file called edits.h.
Notice that this is the same name as the library. This header file is presented in Listing
7.10. edits.h contains prototypes for each of the functions that are being included. It
is good practice to create a file containing prototypes. Also notice the additional
preprocessor directives in lines 5 to 8 and line 15 in Listing 7.10, edits.c. The #if
defined() directive checks to see if the following value, __ebiTs_H, has already been
defined. If it has, then acomment is placed in the code stating that the file has already
been included (line 6). If the value it has not been defined, then line 8 defines the value.
If __ebi7s_H has been defined, then the code from lines 8 to 14 is skipped. This logic
helps to prevent a header file from being included more than once.

Expert Tip: Many programmers use the directives that are presented
in Listing 7.10 in their own header files. This prevents the header files

4 from being included more than once. Many programmers will create

the defined name by adding two underscores to the name of the
header file. Since periods cannot be part of a defined constant, the
period is typically replaced with an additional underscore. This is how
the define for Listing 7.10, __epiTs_H, was derived.

In the rest of the listing, each edit is called twice. In one case, an edit is called with valid
data. In the second case, the edit is called with bad data.

Creating the library requires that each of the functions to be included be compiled into
object files. Once you have the objects, you can create the library by using your
compiler’s library program. As stated earlier, Borland’s library program is TLIB and
Microsoft’s is LIB. To create the library, you simply add each function to it.

Do DON"T]

DO understand the concepts behind libraries.

DON'T put different types of functions in the same library. A library should
contain functions that have similarities. Examples of different libraries may
be a graphics library, an edits library, a file management functions library,
and a statistical library.

DO take advantage of the #ifdef preprocessor directive in your header files
to prevent re-including the file.

Adding New Functions to a Library

Adding functions to a library is done with the addition operator (+). This is true for
both Borland and Microsoft compilers. To add a function, use the following format
for the library command:

LIB libname +function_filename

libname is the name that you want the library to have. This name should be descriptive
of the functions that are stored in the library. This brings up a good point. All of the
functions stored in an individual library should be related in some fashion. For
instance, all of the functions being used in the examples are edit functions. It would
be appropriate to group these functions into a single library. A good name for the
library might be EDITS.

Expert Tip: Only related functions should be stored in a library
\ together.
N

function_filename is the name of the object file that is going to be added into the
library. It is optional whether you include the .OBJ extension on the function
filename. If you don’t, the library program will assume that the extension is .OBJ. It
is also assumed that the 1ibname will have a .LIB extension. To create a library called
EDITS that contains the is_valid_state function, you would enter the following:

LIB EDITS +state.obj

Most compilers use a different program when working with libraries. As
® stated earlier, Borland uses TLIB. If using the Microsoft compiler, you will
use LIB; however, you will need to add a semicolon to the end of each LIB
statement.

’ Compiler Warning: LIB is used in all the examples from this point on.

To add additional functions, also use the addition operator. There is not a real
difference between adding a function versus creating a library. If the library name
already exists, you are adding functions. If it does not, you are creating a library. 1f you
wanted to add the other three functions to the EDITS library, you would enter the
following:

217

218

Using Libraries

LIB EDITS +sex.obj +date.obj +bdate.obj

This adds the is_valid_sex(), is_valid_date(), and is_valid_birthdate() func-
tionstothe library. You should note thatalthough the .OBJ extensions were included,
they were not necessary.

Separate Source Files

You should notice that the functions are put into separate source files. By doing so,
maintenance of future changes is made easier. Each function is isolated so that future
enhancements only affect a single source file. Files are added at the object file level. A
single object file is created from a source file. You should make it a practice of putting
library functions into their own source files.

into their own source files.

\ Expert Tip: You should make it a practice to put library functions

A3

Using a Library

Once you have created a library, you can use it rather than each of the individual files
that had been created. In fact, once the object files are stored in the library, you only
need the original source file to make changes. You could give a library file to other
users; they will be able to include any of its functions within their own programs. To
use the library with Listing 7.9, you would enter the following at the command line:

CL list0709.c edits.lib

You should replace CL with the compile command that your compiler uses. Notice
that the library file comes last. Itshould always be listed after all of the source files. This
is equivalent to having included each of the files as shown previously.

Listing Information in a Library

Once you have created a library, you will probably want to know what functions are
in it. Most library programs enable you to produce a listing that provides this
information. To do this, you add the name of the list file to the command line as
follows:

LIB libname ,listfile

In this case, 1istfile is the name of the file that the information on the library will
be stored. A comma should be included on the command line before the list filename.

You could have included any operations in the command line after the library name
and before the list filename. This includes the addition of functions as you have
already seen, or any of the actions that follow.

Each compiler may produce a slightly different list file. If you use the Borland
compiler, you would type the following to get a listing of the EDITS library stored
in a file called INFO.LST:

TLIB EDITS , INFO

If you are using the Borland compiler, you will notice that the .LST extension is the
default extension that is added to the list file if an extension is not provided. Other
compilers, such as the Microsoft compilers, may not add an extension to the list file
automatically. As stated earlier, the .LIB extension is automatically added to a library
file and therefore is not needed in the library name. If you typed the INFO.LST file,
you would see the following:

Publics by module

BDATE size = 46
_is_valid_birthdate

DATE size = 66
_is_valid_date

SEX size = 79
_is_valid_sex

STATE size = 203
_is_valid_state

This provides you with information on both functions that are stored and the name
of the file that the function is a part of. If you are using the Microsoft compiler, you
would enter the following:

LIB EDITS ,LISTFILE.LST;

Printing the list file should provide output similar to the following:

_is_valid_birthdate. .bdate _is_valid_date....date .
_is_valid_sex..... sex _is_valid_state..._state gg?im
state Offset: 00000010H Code and data size: cbH

_is_valid_state

sex Offset: 000002dOH Code and data size: 4fH
_is_valid_sex

Borland

219

Microsoft

Borland

220

Using Libraries

date Offset: 00000430H Code and data size: 42H
_is_valid_date

bdate Offset: 00000560H Code and data size: 2eH
_is_valid_birthdate

While this is formatted a little different from the Borland output, the contents provide
virtually the same information.

Removing Functions from a Library

In addition to adding functions to libraries, you can also remove functions that are
no longer needed or that you don’t want to distribute with a library. To remove a
function, the subtraction operator (-) is used. The format is the same as adding
functions.

LIB libname -function_filename

As you can see, it is easy to remove a function. The following would remove the
birthdate edit from the edit library:

LIB EDITS -bdate.obj ,list

Notice that a list file called 1ist is also being printed. Following is what would now
be contained in the Borland and Microsoft list files after the subtraction:

_is_valid_date....date _is_valid_sex..... sex
_is_valid_state...state

sex Offset: 00000010H Code and data size: 4fH
_is_valid_sex

date Offset: 00000160H Code and data size: 42H
_is_valid_date

state Offset: 00000280H Code and data size: afH
_is_valid_state

Publics by module

DATE size = 66
_is_valid_date

SEX size = 79
_is_valid_sex

STATE size = 175
_is_valid_state

Updating Preexisting Functions in a Library
Updating a library is equivalent to deleting a function and then adding it again. The
following could be used to update the is_valid_state() function:

LIB EDITS -state

LIB EDITS +state

Where LIB is your appropriate library program. You could also do this by combining
the operations as such:

LIB EDITS -+state

Thiswill remove the old state edit from the EDITS library and then add the new state
function. This only works if the source filename is the same for both the old and the
new function.

Extracting or Moving a Module from a Library
Not only can you put modules or object files intoa library, but you can also copy them
outofalibrary. Todothis, you use the asterisk operator (*). The following pullsacopy
of the STATE.OBJfile from the EDITS library where LIB isyour appropriate library
program:

LIB EDITS *state

Once you have keyed this, you will have made a copy of the state edit (within the
STATE.OBI file) that was in the EDITS library. This file will still be in the library
also. The following will pull a copy of the STATE.OBJ file from the library and also
remove it from the library:

LIB EDITS -*state

This will remove the state edit and create the object file.

What Libraries Are Available Already

As stated earlier, each compiler comes with its own set of libraries that have been
created. Inaddition, most compilers come with Library Reference Manuals that detail
each of the functions within the libraries. Generally, these standard libraries are
automatically linked into your programs when you compile. If you use some of the
more specific features of your compiler—such asgraphics—then you may need to link
in additional libraries.

221

222

Using Libraries

A Final Example
Using the Edits Library

Listing 7.11 isa listing that requires the EDITS.LIB file that you created earlier today.
Notice that this is a completely different program from the one presented earlier. By
including the library when compiling and linking, you can easily reuse the edit

functions.

ﬂpe Listing 7.11. Using the EDITS.LIB—again!

1: /* Program: list0711.c

2: * Author: Bradley L. Jones

3: * Purpose: This is a program to accept a valid birthday.
4: * Note: Requires EDITS.LIB to be linked

5: * */
6:

7: #include <stdio.h>

8: #include “edits.h”

9:

10: void main(void)

11: {

12: int rv;

13: int month=0,

14: day= O,

15: year=0;

16:

17: printf(*\n\nEnter your birthday (format: MM DD YY):”);
18: scanf(“%d %d %d”, &month, &day, &year);

19:

20: rv = is_valid_birthdate(month, day, year);

21:

22: while(C rv < 0)

23: {

24: printfF(““\n\nYou entered an invalid birthdate(%d-%d-%d)”,
25: month, day, year);

26:

27: switch(rv)

28: {

29: case -1: printf(“\nError %d: BAD DAY”, rv);

30: break;

31: case -2: printf(“\nError %d: BAD MONTH”, rv);

32 break;

33: case -3: printf(*\nError %d: BAD YEAR”, rv);

34: break;

35: case -4: printf(“\nError %d: BAD BIRTHDATE”, rv);
36: break;

37: default: printf(“\nError %d: UNKNOWN ERROR”, rv);
38: break;

39:
40:
41:
42:
43:
44:
45:
46:
A47:
48:

}

printf(“\n\nRe-enter your birthday (format: MM DD YY):™);
scanf(“%d %d %d”, &month, &day, &year);

rv = is_valid_birthdate(month, day, year);

}

printf(““\n\nYour birthdate is %d-%d-%d”, month, day, year);

Pl

Enter your birthday (format: MM DD YY):8 32 1965
You entered an invalid birthdate(8-32-1965)

Error -1: BAD DAY

Re-enter your birthday (format: MM DD YY):13 11 1965
You entered an invalid birthdate(13-11-1965)

Error -2: BAD MONTH

Re-enter your birthday (format: MM DD YY):8 11 -89
You entered an invalid birthdate(8-11—89)

Error -3: BAD YEAR

Re-enter your birthday (format: MM DD YY):8 11 1999
You entered an invalid birthdate(8-11-1999)

Error -4: BAD BIRTHDATE

Re-enter your birthday (format: MM DD YY):8 11 1965

Your birthdate is 8-11-1965

This program enables you to enter the birthdate of a person. The user is required
to enter the information until it is correct. If invalid information is entered, then
the user is required to re-enter the entire date. As you will quickly see, the

is_valid_birthdate() function or more appropriately, the is_valid_date() func-
tion that the birthday calls is not entirely accurate. It will consider dates such as
February 30th valid. One of today’s exercises asks you to rewrite this function so that
it is more accurate.

223

224

Using Libraries

Summary

Today, you were presented with a quick review of using multiple sourcefiles. Thiswas
followed with an explanation of using include files with the #include directive. The
difference between double quotes and the more familiar <> signs was explained. The
day then progressed into a description of libraries—what they are and why they are
important. The usage of libraries along with how to add functions to them, remove
functions from them, or update functions within them was explained. In addition,
information on listing out information about a library was covered.

Q&A

Q

A
Q

Do all the functions in a library link into a program, thus increasing the
programs size with unused functions?

No! Only the functions that are called are linked.
Why can’t | put all the functions in a library in the same source file?

By isolating the functions into separate source files, you make the code easier
to maintain. Since you add, update, and remove functions at the source code
level, you isolate functions and changes by having separate source files. If
you make a change to a function, you don’t want to risk changing other
functions.

What happens if you add a function to a library that is already there?

You should be careful not to re-add a function. Some libraries will accept a
function more than one time. This corrupts your library since you will not
be sure which function is being used.

Can more than one library be used at a time?

Yes! You will invariably use the default libraries that come with your com-
piler. When you create or add your own, you are most often using these
libraries in addition to the default libraries. Some compilers have limitations
to the number of libraries you can link in; however, these limits are seldom
reached. For example, the Microsoft limit is 32 libraries.

Q What other functions can be performed on libraries?

A Only the basics of library manipulation were presented today. Most library

programs will do additional functions; however, the way these more ad-
vanced functions are performed is not as standard. You should consult your
compiler’s manuals for more information. Such functions may include
combining libraries or expanding some of the compiler’s default libraries.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned.

Q

[
©

© ©® N o o &~ w N e O

Nl

What is a library?

Where do libraries come from?

How do you add a function to a library?

How do you remove a function from a library?

How do you update a function in a library?

How do you list the information in a library?

How do you copy an object file from a library?

How do you extract or move an object out of a library into an object file?
What is the difference between including a file with quotes and with <>s?

Can source files be included in libraries?

EXxercises

1.

How would you create a library called STATES.LIB containing the modules
RI1.OBJ, IL.OBJ, IN.OBJ?

How would you get a listing from the STATES library?

How would you create the STATES library from Exercise 1 and get a listing
at the same time?

225

=)

226

Z

Using Libraries

11.

12.

13.

How would you add KY.OBJ and FL.OBJ to the STATES library?

. How would you remove the KY module from the STATES library?

How would you replace the FL module with a new one in the STATES
library?

How would you get a copy of the IL object from the STATES library?

. Create a function to verify that a string contains all uppercase alpha charac-

ters (A to Z). If the string does contain all uppercase characters, return 1;
otherwise, return O.

. Add the previous function to your edits library.
10.

ON YOUR OWN: Rewrite the date edit to be more accurate. It should take
into consideration the number of days that a particular month has. You may
also want to include leap years!

ON YOUR OWN: Update your edits library with your new birthdate
function.

BUG BUSTER: What is wrong with the following?
CL sourcel.c library.lib source2.obj

ON YOUR OWN: Create a listing file for some of the libraries that come
with your compiler. These libraries are typically stored in a subdirectory
called LIBRARY or LIB. You should notice many familiar functions.

