
31

2

 
 

 
 

 
 

 

WEEK

Complex
Data Types

22

11



32

Complex Data Types
DAYDAY

2

The basic building blocks of a program are variables. Variables are created with data
types. The basic data types are presented in every beginning C book. Today you will
go beyond these basic data types. Today you learn:

■ What are considered the basic data types.

■ How to use single and multiple dimensioned arrays.

■ How to use pointers in complex situations, including:

■ A review of pointers.

■ Using pointers with other pointers.

■ Using pointers with functions.

■ Using pointers with structures.

■ What complex data types can be created with structures and unions.

■ What dynamic or variable-length structures are.

What Are Data Types?
There are many basic data types in C. These are presented in virtually every C book.
Several of these data types were used in the listings in Day 1. In addition, virtually every
C program will use data types to declare variables. The basic data types are presented
in Table 2.1.

Table 2.1. The basic data types.

Data Type Description

char character

int integers

short short integers

long long integers

float decimal numbers

double larger decimal numbers



33

2

The basic data types are used in creating variables, which in turn store information for
your programs to use. The data type you use when declaring the variable determines
the type of information that can be stored as specified by the description in Table 2.1.

Note: A variable is a name given to a location in memory. The data type
used when naming, or creating, the variable determines how much space
is reserved.

The Values of the Basic Data Types
You should be familiar with the basic data types and the modifiers that can be applied
to them from your previous experience with C. Most important are the signed and
unsigned modifiers. Table 2.2 shows the minimum and maximum values that each
of the basic data types can hold and their typical memory size in bytes.

Table 2.2. Maximum and minimum values of basic data types.

Variable Type Size Minimum Maximum

signed character 1 byte –128 128

unsigned character 1 byte 0 255

signed integer 2 bytes –32,768 32,767

unsigned integer 2 bytes 0 65,535

signed short integer 2 bytes –32,758 32.767

unsigned short integer 2 bytes 0 65,535

signed long integer 4 bytes –2,147,483,648 2,147,483,647

unsigned long integer 4 bytes 0 4,294,967,295

float 4 bytes 3.4E-38 3.4E38

double 8 bytes 1.7E-308 1.7E308



34

Complex Data Types
DAYDAY

2

Creating Your Own Data Types
C provides a command that enables you to create your own data types. Actually, you
don’t create them; you simply rename the existing types using the typedef keyword.
The following presents the typedef’s use:

typedef existing_type new_type_name;

For example:

typedef float decimal_number;

When the previous type definition is declared, decimal_number can be used just like
any of the other variable types. For example,

char  x;
int   y;
decimal_number z;

By using the typedef keyword, you can increase the readability of your code. In
addition, as you work with the more intricate types, using type definitions can make
the code seem a little less complex.

Several new types are generally created using type definitions. The following are some
of the type definitions that have been included with a wide variety of compilers:

typedef int              BOOL;
typedef unsigned char    BYTE;
typedef unsigned short   WORD;
typedef unsigned int     UINT;
typedef signed long      LONG;
typedef unsigned long    DWORD;
typedef char far*        LPSTR;
typedef const char far*  LPCSTR;
typedef int              HFILE;
typedef signed short int SHORT;

You should notice that the types that have been created here are in all uppercase letters.
This is so you don’t confuse them with variables. If you have the Microsoft or Borland
compilers, you’ll find the preceding type definitions in the VER.H file and several
other files.

  Expert Tip: You should be aware of the preceding type definitions;
many advanced programs use them.



35

2

Type

Advanced Data Usage: Grouping Data
By using the basic data types, you can create complex or advanced data types. You
create new ways of associating and accessing data when you group basic data types.
There are three basic groupings of data types that are commonly used in C programs.
Because these groups are common, their usage is detailed in most basic C books. They
will be briefly reviewed here. The three types of groupings are:

■ Arrays

■ Structures

■ Unions

Arrays
An array allows a group of similar data to be accessed using a single variable. This data
is all of the same data type. The data type can be one of the basic data types presented
earlier, or it can be any of the complex data types presented in this chapter. This even
includes other arrays. Listing 2.1 shows how basic arrays can be accessed.

Listing 2.1. Accessing arrays and their data.

1:   /* Program:  array.c
2:    * Author:   Bradley L. Jones
3:    * Purpose:  Demonstration of accessing arrays and their
4:    *           data.
5:    *=========================================================*/
6:
7:   #include <stdio.h>
8:
9:   char text[15] = {‘B’,’R’,’A’,’D’,’L’,’E’,’Y’,’ ‘,
10:                   ‘J’,’O’,’N’,’E’,’S’, 0, ‘X’ };
11:
12:  int number_array[7] = { 66, 82, 65, 68,
13:                          76, 69, 89 };
14:
15:  void main( void )
16:  {
17:     int ctr;
18:
19:     printf( “\n\nPrint Character array...\n\n”);
20:
21:     for (ctr = 0; ctr < 15; ctr++)

continues



36

Complex Data Types
DAYDAY

2

Listing 2.1. continued

22:     {
23:         printf( “%c”, text[ctr] );
24:     }
25:
26:     printf( “\n\nReprint text with offsets...\n\n”);
27:
28:     for (ctr = 0; ctr < 15; ctr++)
29:     {
30:         printf( “%c”, *(text+ctr));
31:     }
32:
33:     printf( “\n\nReprint using string function...\n\n”);
34:     printf( “%s”, text );
35:
36:     printf( “\n\nPrint number array...\n\n”);
37:
38:     for (ctr = 0; ctr < 7; ctr++)
39:     {
40:         printf( “%d “, number_array[ctr] );
41:     }
42:  }

Print Character array...

BRADLEY JONES X

Reprint text with offsets...

BRADLEY JONES X

Reprint using string function...

BRADLEY JONES

Print number array...

66 82 65 68 76 69 89

This program shows how single dimension arrays can be defined, preinitialized,
and displayed. When an array is created, each element is similar to an individual
variable. The difference between individual variables and the array elements is

that the array elements have the same name. In addition, array elements are stored
one after the other in memory, whereas individual variables could be stored any-
where. Figure 2.1 shows what memory might look like for the text character array in
Listing 2.1.

Output

Analysis



37

2
Figure 2.1. The text character array in memory.

Listing 2.1 should be review. Lines 9 and 10 declare a character array called text and
initialize it. Lines 12 and 13 declare and initialize a numeric array, number_array.
These two arrays are then used in the program. Lines 21 through 24 use a for loop
to print each value of the text character array using a subscript. As you can see, the
subscripts in C start with 0 not 1. Other languages, such as BASIC, use 1 as the first
subscript.

 
Review Tip: C uses 0 (not 1!) as the first subscript.

Lines 28 through 31 offer a different method for printing the same character array.
Rather than subscripts, a memory offset (pointer) is used. The value of text by itself
is the address of the first element of the text array. By using the dereference operator
(*), the value at the address stored in text (or stated in computerese, pointed to by text)
can be printed. Using Figure 2.1 as a reference, you can see the value of text might
be 100. The first time line 30 is reached, the value of text + ctr is equal to text, or
100, because ctr is zero. Looking at the printf(), you see that the character at address
100 is printed. In the case of text, this character is B. The next time through the for
loop, the value pointed to at text + ctr—or at 100 + 1—is printed. The value at 101
is R. This continues through the end of the for loop. If these concepts are new to you,
or if you are unsure of what dereferencing is, read the pointer review section that
follows later today. If it is still confusing, you may want to consult a beginning C book
for a review on pointer basics. Teach Yourself C in 21 Days has two chapters on point-
ers and their use.

Line 34 prints the text character array a third way. This time the character array is
printed as a string. You should understand the difference between a character array
and a string—the difference is sometimes subtle. A string is basically a null-terminated
character array, which means it ends at the first null character. When line 34 prints,



38

Complex Data Types
DAYDAY

2

Type

it stops printing at the 15th character—the X is not printed. This is because the end
of the string is considered to be the null in position 14.

 
Review Tip: A null character is a character with a numeric value of 0.

The numeric array, numeric_array, is printed in lines 38 through 41. As you can see,
this is just like the character array only numbers, rather than characters, are being
printed.

Structures
Unlike arrays, which allow data of the same type to be grouped together, structures
allow data of different types to be stored. The following is an example of a structure
delcaration.

struct date_tag {
    int month;
    char breaker1;
    int day;
    char breaker2;
    int year;
};

By grouping different data types, you can see that it’s easy to create new types. With
the preceding structure, you can declare a structure variable that will hold a date. This
single variable will contain a month, day, year, and two breakers. Each of these parts
of the declared variable can then be accessed. Listing 2.2 shows the use of a structure.

Listing 2.2. Use of the date structure.

1:   /* Program:  STRUCT.C
2:    * Author:   Bradley L. Jones
3:    * Purpose:  Program to use a date structure
4:    *===================================================*/
5:
6:   #include <stdio.h>
7:
8:   struct date_tag {
9:      int  month;
10:     char breaker1;
11:     int  day;
12:     char breaker2;
13:     int  year;
14:  } date1;
15:



39

2

16:  void main(void)
17:  {
18:    struct date_tag date2 = { 1, ‘/’, 1, ‘/’, 1998 };
19:
20:    printf(“\n\nEnter information for date 1: “);
21:    printf(“\n\nEnter month: “);
22:    scanf(“%d”, &date1.month);
23:    printf(“\nEnter day: “);
24:    scanf(“%d”, &date1.day);
25:    printf(“\nEnter year: “);
26:    scanf(“%d”, &date1.year);
27:
28:    date1.breaker1 = ‘-’;
29:    date1.breaker2 = ‘-’;
30:
31:    printf(“\n\n\nYour dates are:\n\n”);
32:    printf(“Date 1: %d%c%d%c%d\n\n”, date1.month,
33:                                     date1.breaker1,
34:                                     date1.day,
35:                                     date1.breaker2,
36:                                     date1.year );
37:
38:    printf(“Date 2: %d%c%d%c%d\n\n”, date2.month,
39:                                     date2.breaker1,
40:                                     date2.day,
41:                                     date2.breaker2,
42:                                     date2.year );
43:
44:    printf(“\n\n\nSize of date_tag structure: %d”,
45:    sizeof(date1));
46:  }

Enter information for date 1:

Enter month: 12

Enter day: 25

Enter year: 1994

Your dates are:

Date 1: 12-25-1994

Date 2: 1/1/1998

Size of date_tag structure: 8

Output



40

Complex Data Types
DAYDAY

2

This listing should also provide a review. Later today, you will see advanced use
of structures—structures with variable lengths. You can see in lines 8 through
14 that the date structure has been defined. In fact, you can see that a variable,

date1, has been declared. In line 18, another variable, date2, is declared using the
struct keyword along with the previously defined structure’s tag, date_tag. At the
time of date2’s declaration, each of its elements is also initialized.

Lines 20 through 26 enable the user to enter the information for date1. Using
printf(), the user is prompted for each of the numeric elements of the structure. Lines
28 and 29 set the breaker values to dashes. These could have been slashes or any other
values. Lines 32 through 42 print the values from the individual dates.

Word Alignment
In Listing 2.2, lines 44 and 45 were added to help demonstrate word alignment. How
big is the date structure? Typically, the size of the structure is the size of its elements
added together. In the case of the date structure, this would consist of three integers
(each two bytes) and two characters (each a single byte). This adds up to a total of eight
as the preceding output presented. Figure 2.2 demonstrates the memory placement
of each of the date structure’s elements.

Analysis

Figure 2.2. The date structure in memory with word alignment off.

You may have gotten the answer of 10 instead of 8 in the output for Listing 2.2. If you
did, you compiled with the word-alignment option on. Word alignment is an option
that can be set when compiling. If this alignment is on, each element of a structure
is stored starting at the beginning of a byte. The exception to this is character elements
following other characters. In this case, they can start on an odd byte. A word is the
same as an unsigned short—two bytes. Check your compiler’s compile options to see
how to compile the listing with word alignment on and off. Run Listing 2.2 again after
compiling each way. Figure 2.3 shows the memory placement for each of the date
structure’s elements with word alignment on.



41

2
Figure 2.3. The date structure in memory with word alignment.

DO DON’T
DO capitalize the new types you create with type definitions so that you
don’t confuse them with variables.

DO understand word alignment. At some point, your data won’t seem to be
what you think it is. This could be because you are dealing with data that
has been aligned differently from how you are accessing it.

DO review a beginning C book, such as Teach Yourself C in 21 Days, if you
don’t understand structures and arrays.

Unions
Unions are a special kind of structure. Instead of storing the individual items one after
the other, each element is stored in the same location of memory. The following is an
example of a union declaration for a date string and the previously declared date
structure.

union union_date_tag {
    char str_date[8+1];
    struct date_tag struct_date;
} birthdate;

Figure 2.4 shows what this looks like in memory.

Each of the values in the union can be accessed; however, only one can be accessed at
a time. This is not a concern in the case of the birthdate union, but consider a union
that has mixed values, as in the following:

union mix_tag {
    int number;
    char string[10];
    char float;
}values;



42

Complex Data Types
DAYDAY

2

Type

Figure 2.4. The birthdate union.

This union contains values that require different amounts of storage space. Only one
of these values can be used at a time. If you have an integer value stored in number, you
cannot have a value stored in the string or the float variables. This is because these
values share a location in memory. Each of the variables is independent. Listing 2.3
helps to demonstrate the independence of these variables.

Listing 2.3. Unions in memory.

1:   /* Program:  UNION.C
2:    * Author:   Bradley L. Jones
3:    * Purpose:  Demonstrate a Union
4:    *===================================================*/
5:
6:   #include <stdio.h>
7:
8:      struct date_struct_tag {
9:         int  month;
10:        char separater1;
11:        int  day;
12:        char separater2;
13:        int  year;
14:     };
15:
16:  union date_tag {
17:     char full_date[8+1];
18:     struct date_struct_tag date;
19:  };
20:
21:  void main(void)
22:  {
23:
24:    union date_tag date1;
25:    union date_tag date2;
26:
27:    printf(“\n\nEnter string date (1) (Format: MM/DD/YY): “);
28:    gets(date1.full_date);
29:



43

2

30:    printf(“\n\nEnter information for structure date 2: “);
31:    printf(“\n\nEnter month: “);
32:    scanf(“%d”, &date2.date.month);
33:    printf(“\nEnter day: “);
34:    scanf(“%d”, &date2.date.day);
35:    printf(“\n\nEnter year: “);
36:    scanf(“%d”, &date2.date.year);
37:
38:    date2.date.separater1 = ‘-’;
39:    date2.date.separater2 = ‘-’;
40:
41:    printf(“\n\n\nYour dates are:\n\n”);
42:
43:    printf(“String - Date 1: %s\n\n”, date1.full_date);
44:
45:    printf(“Structure - Date 2: %0d%c%0d%c%d\n\n”,
46:                                     date2.date.month,
47:                                     date2.date.separater1,
48:                                     date2.date.day,
49:                                     date2.date.separater2,
50:                                     date2.date.year );
51:
52:
53:    printf(“String - Date 1”
              “(printed as a Structure): %0d%c%0d%c%d\n\n”,
54:                                      date1.date.month,
55:                                      date1.date.separater1,
56:                                      date1.date.day,
57:                                      date1.date.separater2,
58:                                      date1.date.year );
59:
60:    printf(“Structure - Date 2 (printed as String): %s\n\n”,
61:                                     date2.full_date);
62:  }

Enter string date (1) (Format: MM/DD/YY): 12/15/63

Enter information for structure date 2:

Enter month: 01

Enter day: 21

Enter year: 1998

Output



44

Complex Data Types
DAYDAY

2

Your dates are:

String - Date 1: 12/15/63

Structure - Date 2: 1-21-1998

String - Date 1 (printed as a Structure): 12849/13617/13110

Structure - Date 2 (printed as a String): J_

The UNION.C program enables you to store a date as either a string date or a
date composed of a structure. It uses a union to enable you to store them in the
same area of memory.

The structure that is to be used in the union is defined in lines 8 through 14. This
structure contains three integer values and two character values. Lines 16 through 19
actually define the union. The character string portion of the union will be called
full_date. The structure will be called date. Notice that this is just a definition of the
union. The union is not actually declared until lines 24 and 25. Two unions are
declared, date1 and date2. Lines 27 and 28 fill in the first date union, date1, with a
string value. Lines 30 through 39 fill in the second union, date2, by prompting for
three integers and then filling in the separators with dashes.

Lines 43 through 50 print the values of date1 and date2 so that you can see them.
More importantly, lines 53 through 61 reprint the values, but this time the opposite
part of the union is used. date1 was entered as the string part of the date union. Lines
53 through 58 print this string date using the structure portion of the union. Notice
that the output doesn’t appear to be correct. This is because a string is stored
differently than numeric values.

Pointers in Review
Pointers were mentioned previously when talking about printing the character arrays.
Because understanding pointers is required for a solid understanding of C, every
beginning C book covers them in some detail. A pointer is a special kind of variable.
A pointer is a numeric variable used to hold a memory address. When you declare a
pointer, you specify the type of variable that is located at the address stored in the
pointer variable. The following are the declarations for three different pointers.

Analysis



45

2

 
Review Tip: A pointer is a numeric variable that is used to hold a
memory address. For example:

char *char_ptr;

int *int_ptr

struct date_tag *date_ptr;

As you can see, pointers are declared like other variables with the exception of the
asterisk. char_ptr is defined as a pointer to a character, int_ptr is a pointer to an
integer, and date_ptr is a pointer to a date_tag structure. You know these are declared
as pointers by the asterisks preceding them. (An asterisk in a declaration always means
the variable is a pointer.)

As already stated, char_ptr is a pointer to a character. The char_ptr variable does not
hold a character. Instead, it will hold a number, and more exactly char_ptr will hold
the number of a memory address used to store a character. Figure 2.5 shows a pointer
and its variable in memory.

Figure 2.5. A pointer in memory.

Finding the Address of a Variable
If a pointer is used to hold a memory address, then it’s important to be able to find
addresses. In Figures 2.1 through 2.5, you saw how different variables were stored in
memory. In most of the examples, the starting memory address was 100. These are
simple examples. When variables are actually stored in memory, they can be stored in
a variety of locations. In addition, the locations may vary each time the program is run.
To truly know where a variable is stored, you need to find its address. C provides, an
“address of ” operator, which is an ampersand (&), to enable you to determine the
address of any variable. Listing 2.4 demonstrates using both a pointer and the “address
of ” operator.



46

Complex Data Types
DAYDAY

2

Type Listing 2.4. A pointer review.

1:   /* Program:  Pointer.c
2:    * Author:   Bradley L. Jones
3:    * Purpose:  To show the basics of pointers
4:    *=================================================*/
5:
6:   #include <stdio.h>
7:
8:   void main(void)
9:   {
10:     int a_number;
11:     int *ptr_to_a_number;
12:     int **ptr_to_ptr_to_a_number;
13:
14:     a_number = 500;
15:
16:     ptr_to_a_number = &a_number;
17:
18:     ptr_to_ptr_to_a_number = &ptr_to_a_number;
19:
20:
21:     printf(“\n\nThe number is: %d”, a_number);
22:     printf(“\nThe value of the address of the number is %ld”,
23:            &a_number);
24:     printf(“\n\nThe value of the pointer to a number is %ld”,
25:            ptr_to_a_number);
26:     printf(“\nThe value of the address of the ptr to a nbr is %ld”,
27:            &ptr_to_a_number);
28:     printf(“\n\nThe value of the ptr to a ptr to a nbr is %ld”,
29:            ptr_to_ptr_to_a_number);
30:
31:     printf(“\n\n\nThe indirect value of the ptr to a nbr is %d”,
32:            *ptr_to_a_number);
33:     printf(“\nThe indirect value of the ptr to a ptr to a nbr is %ld”,
34:            *ptr_to_ptr_to_a_number);
35:     printf(“\nThe double indirect value of the ptr to a ptr to a nbr”

Output

                “is %d”,
36:            **ptr_to_ptr_to_a_number);
37:  }

The number is: 500
The value of the address of the number is 78053364

The value of the pointer to a number is 78053364
The value of the address of the ptr to a nbr is 78053362



47

2

The value of the ptr to a ptr to a nbr is 78053362

The indirect value of the ptr to a nbr is 500
The indirect value of the ptr to a ptr to a nbr is 78053364
The double indirect value of the ptr to a ptr to a nbr is 500

Listing 2.4 declares three variables. Line 10 declares an integer variable,
a_number, which is assigned the value of 500 in line 14. Line 11 declares a pointer
to an integer called ptr_to_a_number. This is assigned a value in line 16. As you

can see, it is assigned the address of (&) the previously declared number, a_number.
The third declared variable, ptr_to_ptr_to_a_number, is a pointer to a pointer. This
pointer is assigned the address of the pointer, ptr_to_a_number (line 18).

Lines 21 through 36 print the values of the previously declared and initialized
variables. Line 21 prints the value of the initial integer value, a_number. Line 22 prints
the address of a_number as a long value. Since line 16 assigned this value to
ptr_to_a_number, it should equal the value printed in line 24. Line 26 prints the
address of the pointer, ptr_to_a_number. This helps to demonstrate that a pointer is
just another variable that is located at an address in memory and contains an individual
value. Line 31 prints the indirect value of ptr_to_a_number. The indirect value of a
pointer is the value at the location stored in the pointer variable. In this case, the value
will be 500.

DO DON’T
DON’T confuse a pointer’s address with its stored value.

Pointers to Pointers
A pointer to another pointer was declared in Listing 2.4. Because a pointer is itself a
variable, there is no reason why you can’t declare one pointer to hold the address of
another pointer. As shown in Listing 2.4, you can declare multiple layers of pointers
by simply stacking the asterisks in the declaration. Figure 2.6 shows a variable, var,
declared in memory with a value of 500. It also shows a pointer, ptr1, to this variable.
Additionally, the figure shows a pointer, ptr2ptr, that points to ptr1, which actually
makes it a pointer to a pointer. Listing 2.4 presented an example of this using slightly
different variable names.

Analysis



48

Complex Data Types
DAYDAY

2

Type

Figure 2.6. Representation of pointers.

Pointers to Functions
You can create pointers to functions because they are stored in memory also. These
pointers must be declared differently than variable pointers. A declaration for a
pointer to a function would be declared as:

return_type (*func_pointer)(parameter_list);

where func_pointer is the name of the function pointer. parameter_list is the
parameters that are to be passed to the function being pointed to. return_type is the
data type that the function will return. Listing 2.5 presents a simple example of using
a function pointer.

Listing 2.5. Using a function pointer.

1:   /* Program:  list0205.c
2:    * Author:   Bradley L. Jones
3:    * Purpose:  Demonstrate a function pointer
4:    *=================================================*/
5:
6:   #include <stdio.h>
7:
8:   void main(void)
9:   {
10:     int (*func_ptr)();
11:
12:     func_ptr = printf;
13:
14:     (*func_ptr)(“\n\nHello World!\n\n”);
15:  }

Hello World!Output



49

2

Type

Line 10 is the declaration for the function pointer, func_ptr. Notice that the
parentheses are around the asterisk and the pointer’s name, func_ptr. If you
leave these parentheses off, you get different results:

int *func_ptr();

This is the same declaration without the parentheses. Instead of being a prototype for
a pointer to a function, it is a prototype for a function that returns a pointer to an
integer.

You can see in line 12, printf was assigned to func_ptr. When this assignment was
made, the parentheses were left off the printf. This was so the address of the printf
would be passed to func_ptr and not the return value a call to printf(). Although not
necessary, this could also have been done by using the “address of” operator as follows:

func_ptr = &printf;

Line 14 is the call to the function. Notice that once again the asterisk is used to
dereference the function. Because the parentheses to the right have a higher prece-
dence, you need to include an extra set of parentheses around the function name and
asterisk. Line 14 is equivalent to calling printf().

The Practical Use of a Function Pointer
There are several occasions when you’ll want to pass a function pointer to another
function. The qsort() function is a prime example of such an instance. The ANSI C
function, qsort(), expects a pointer to a function to be passed to it. The qsort()
function sorts the entries in a table by calling a user-defined function. Following is the
prototype for qsort():

void qsort( void *base, size_t nelem, size_t width,
            int (*fcmp)(const void *, const void *));

Notice that the third parameter in this prototype, fcmp, is a pointer to a function.
Listing 2.6 shows how different functions can be passed in this third parameter.

Listing 2.6. Passing pointers to functions.

1:   /* Program:  sort.c
2:    * Author:   Bradley L. Jones
3:    * Purpose:  Demonstrate a function pointer being
4:    *           passed as an argument
5:    *=================================================*/
6:
7:   #include <stdio.h>

Analysis

continues



50

Complex Data Types
DAYDAY

2

Listing 2.6. continued

8:   #include <stdlib.h>
9:   #include <string.h>
10:
11:  int sort_a_to_z(const void *first, const void *second);
12:  int sort_z_to_a(const void *first, const void *second);
13:
14:  void main(void)
15:  {
16:     int  ctr = 0;
17:     int  total;
18:     char list[10][256];
19:
20:     printf(“\n\nPress <Enter> after each word. Enter QUIT to
               end\n”);
21:
22:     gets(list[ctr]);
23:
24:     while( stricmp(list[ctr], “QUIT”) != NULL )
25:     {
26:        ctr++;
27:        if(ctr == 10)
28:          break;
29:
30:        gets(list[ctr]);
31:     }
32:     total = ctr;
33:
34:     qsort((void *) list, total, sizeof(list[0]), sort_a_to_z);
35:
36:     printf(“\nThe items sorted A to Z\n”);
37:     for(ctr = 0; ctr < total; ctr++ )
38:     {
39:        printf(“\n%s”, list[ctr]);
40:     }
41:
42:     qsort((void *) list, total, sizeof(list[0]), sort_z_to_a);
43:
44:     printf(“\n\nThe items sorted Z to A\n”);
45:     for(ctr = 0; ctr < total; ctr++ )
46:     {
47:        printf(“\n%s”, list[ctr]);
48:     }
49:  }
50:
51:  int sort_a_to_z( const void *first, const void *second)
52:  {
53:     return( strcmp((char*)first, (char *)second) );
54:  }
55:



51

2

56:  int sort_z_to_a( const void *first, const void *second)
57:  {
58:     return( strcmp((char*)second, (char *)first) );
59:  }

Press <Enter> after each word. Enter QUIT to end
Mississippi
Illinois
Indiana
Montana
Colorado
South Dakota
Florida
California
Alaska
Georgia

The items sorted A to Z

Alaska
California
Colorado
Florida
Georgia
Illinois
Indiana
Mississippi
Montana
South Dakota

The items sorted Z to A

South Dakota
Montana
Mississippi
Indiana
Illinois
Georgia
Florida
Colorado
California
Alaska

This program enables the user to enter up to ten words or phrases. It then sorts
the words into ascending and descending orders using qsort(). As you saw in
the preceding prototype, qsort() takes a pointer to a function as the third

parameter. A function name without the parentheses is the address of the function.
Two different functions are passed in the SORT.C listing. In line 34, qsort() is called

Output

Analysis



52

Complex Data Types
DAYDAY

2

with sort_a_to_z as the third parameter. In line 42, sort_z_to_a is passed. Notice
that these functions were prototyped in lines 11 and 12. It was necessary to prototype
them before using them.

The rest of this program shouldn’t present anything new. In line 20, the user is given
a prompt to enter words. In lines 22 through 31, the program gets the information
from the user. Line 32 assigns the counter, ctr, to total. ctr, and now total, contains
the number of items that were entered. This is necessary for knowing how many items
are to be sorted and printed. Lines 36 through 40 and 44 through 48 print the sorted
values in the list array after each call to qsort().

Complex Data Types
(or Complex Data Combinations)

Virtually all of the basic data types presented so far today can be combined. When you
combine the data types, you create what could be termed complex data types. These
data types aren’t really any more complex than the basic types. It’s just that you have
to be aware of what combinitations you have made. Some of the more common
combinations of data types are:

■ Pointers to structures.

■ Arrays of structures.

■ Variable-length structures.

Pointers to Structures
There are two commonly used ways to pass information from one function to another.
The first and most common way is passing by value in which a value is passed to the
called function. The second way, known as passing by reference, is to pass a pointer that
references the data being passed. When you pass a pointer to a function, the new
function has the capability to modify the original data. In addition, less computer
resources are used in passing a pointer (reference) than in passing a copy (value). In
the case of structures and other large data constructs, this can become important. The
amount of space available to pass information is limited. In addition, there are a variety
of instances where you’ll want to modify the original data and not a copy of the data.
Because of this, pointers to data and pointers to structures can be very important.
Listing 2.7 presents an example of a pointer to a structure.



53

2
Type

Note: An additional use of pointers to structures is in linked lists, which
are covered in Day 3.

Listing 2.7. Using a pointer to a structure.

1:   /* Program:  list0207.C
2:    * Author:   Bradley L. Jones
3:    * Purpose:  Program to demonstrate a pointer to a
4:    *           structure
5:    *===================================================*/
6:
7:   #include <stdio.h>
8:   #include <stdlib.h>
9:   #include <string.h>
10:
11:  struct name_tag {
12:     char last[25+1];
13:     char first[15+1];
14:     char middle;
15:  };
16:
17:  char *format_name( struct name_tag *name );
18:
19:  void main(void)
20:  {
21:    struct name_tag name;
22:
23:    char input_string[256];
24:    char *full_name;
25:
26:    printf(“\nEnter name:”);
27:    printf(“\n\nFirst name     ==> “);
28:    gets(input_string);
29:    strncpy(name.first, input_string, 15);
30:    name.first[15] = NULL;
31:
32:    printf(“\nMiddle initial ==> “);
33:    gets(input_string);
34:    name.middle = input_string[0];
35:
36:    printf(“\nLast name      ==> “);
37:    gets(input_string);
38:    strncpy(name.last, input_string, 25);
39:    name.last[25] = NULL;
40:

continues



54

Complex Data Types
DAYDAY

2

Listing 2.7. continued

41:    full_name = format_name( &name );
42:
43:    printf(“\n\nThe name you entered: %s”, full_name);
44:    free(full_name);
45:  }
46:
47:  char *format_name( struct name_tag *name )
48:  {
49:      char *full_name;
50:      char tmp_str[3];
51:
52:      full_name = malloc( 45 * sizeof(char) );
53:
54:      if( full_name != NULL )
55:      {
56:         strcpy( full_name, name->first );
57:         strcat( full_name, “ “ );
58:
59:         tmp_str[0] = name->middle;
60:         tmp_str[1] = ‘.’;
61:         tmp_str[2] = NULL;
62:
63:         strcat( full_name, tmp_str);
64:         if(name->middle != NULL)
65:            strcat( full_name, “ “);
66:
67:         strcat( full_name, name->last );
68:      }
69:
70:      return(full_name);
71:  }

Enter name:

First name     ==> Bradley

Middle initial ==> Lee

Last name      ==> Jones

The name you entered: Bradley L. Jones

Output



55

2

Type

This program enables you to enter information into a name structure. The
structure, name_tag, holds a first, middle, and last name. This structure is
declared in lines 11 through 15. Once the name is entered in lines 26 to 39, the

name is then formatted into the full_name variable. The function, format_name(), is
used to do the formatting. This function was prototyped in line 17. format_name()
receives a pointer to a structure as its only parameter and returns a character pointer
for the name string. Once the name is formatted, line 43 prints it. Line 44 concludes
the program by freeing the space that was allocated for the name by format_name().

Lines 47 through 71 contain the format_name() function. This function formats the
name into the format of first name, space, middle initial, period, space, last name. Line
52 allocates memory with the malloc() command. (This should be familiar from
Day 1.) Line 54 verifies that memory was allocated for the full name. If it was, the
members of the name structure are formatted. Notice that this function uses
the indirect membership operator (->). This function could have used indirection.
The following would be an equivalent to line 59:

tmp_str[0] = (*name).middle;

Notice that there are parentheses around the structure pointer. This is because the
member operator (.) has a higher precedence than the indirection operator (*).

Arrays of Structures
Arrays of structures are also commonly used. An array of structures operates just like
an array of any other data type. Listing 2.8 is an expansion of Listing 2.7. This listing
allows multiple names to be entered and placed into an array of name structures.

Listing 2.8. Using an array of structures.

1:   /* Program:  list0208.C
2:    * Author:   Bradley L. Jones
3:    * Purpose:  Program to demonstrate an array of
4:    *           structures
5:    *===================================================*/
6:
7:   #include <stdio.h>
8:   #include <stdlib.h>
9:   #include <string.h>
10:
11:  #define NAMES  2
12:

Analysis

continues



56

Complex Data Types
DAYDAY

2

Listing 2.8. continued

13:  struct name_tag {
14:     char last[25+1];
15:     char first[15+1];
16:     char middle;
17:  };
18:
19:  char *format_name( struct name_tag *name );
20:
21:  void main(void)
22:  {
23:    struct name_tag names[NAMES];
24:
25:    int  ctr = 0;
26:    char input_string[256];
27:    char *full_name;
28:
29:    printf(“\n\nThis program allows you to enter %d names.”, NAMES);
30:    for( ctr = 0; ctr < NAMES; ctr++)
31:    {
32:       printf(“\nEnter name %d.”, ctr+1);
33:       printf(“\n\nFirst name     ==> “);
34:       gets(input_string);
35:       strncpy(names[ctr].first, input_string, 15);
36:       names[ctr].first[15] = NULL;
37:
38:       printf(“\nMiddle initial ==> “);
39:       gets(input_string);
40:       names[ctr].middle = input_string[0];
41:
42:       printf(“\nLast name      ==> “);
43:       gets(input_string);
44:       strncpy(names[ctr].last, input_string, 25);
45:       names[ctr].last[25] = NULL;
46:    }
47:
48:    printf(“\n\nThe names: \n”);
49:
50:    for( ctr = 0; ctr < NAMES; ctr++ )
51:    {
52:       full_name = format_name( &names[ctr] );
53:       printf(“\nName %d: %s”, ctr+1, full_name);
54:       free(full_name);
55:    }
56:  }
57:
58:  char *format_name( struct name_tag *name )
59:  {
60:      char *full_name;
61:      char tmp_str[3];
62:



57

2

63:      full_name = malloc( 45 * sizeof(char) );
64:
65:      if( full_name != NULL )
66:      {
67:         strcpy( full_name, name->first );
68:         strcat( full_name, “ “ );
69:
70:         tmp_str[0] = name->middle;
71:         tmp_str[1] = ‘.’;
72:         tmp_str[2] = NULL;
73:
74:         strcat( full_name, tmp_str);
75:         if(name->middle != NULL)
76:            strcat( full_name, “ “);
77:
78:         strcat( full_name, name->last );
79:      }
80:
81:      return(full_name);
82:  }

This program allows you to enter 2 names.
Enter name 1.

First name     ==> Boris

Middle initial ==>

Last name      ==> Yeltsin

Enter name 2.

First name     ==> Bill

Middle initial ==> E

Last name      ==> Clinton

The names:

Name 1: Boris Yeltsin
Name 2: Bill E. Clinton

As stated before, this listing is quite similar to Listing 2.7. The listing allows
names to be entered into an array. When all the names are entered, they are
formatted and printed.

Output

Analysis



58

Complex Data Types
DAYDAY

2

The difference in this listing should be easy to follow. In line 11, a defined constant,
NAMES, is declared. This constant contains the number of names that will be entered.
By using a defined constant, it becomes easy to change the number of names to be
entered. Line 23 is also different. Instead of just declaring a name structure, an array
is being declared. Lines 30 and 50 contain for loops that are used to get the multiple
occurrences of names.

Like regular arrays, structure arrays will also use subscripts to access each element. This
can first be seen in line 35. Notice that the subscript goes on the structure name, names,
not the member name. Other than adding the subscript, this program will operate
similar to Listing 2.7.

Variable-Length Structures
Variable-length structures are simply structures that can vary in size. In a normal
structure, such as the following, you can determine the size:

struct employee_kids_tag{
    char first_name[15+1];
    char last_name [19+1];
    char child1_name[19+1];
    char child2_name[19+1];
};

You should be able to determine that variables declared with the employee_kids_tag
will be 76 characters long. This is calculated by adding the sizes of the individual
elements, plus any byte alignment that may occur. The employee_kids_tag structure
would work well for all the employees who have two children or fewer, but what if
John Smith has 12 kids? You wouldn’t be able to store all his kids’ names in a single
structure. There are several solutions to get around this. The first is to modify the
structure to declare 12 names for the children rather than 2. The following code shows
this being done with an array instead of individual child name variables:

struct employee_kids_tag{
    char first_name[15+1];
    char last_name [19+1];
    char children_names[19+1][12];
};

This structure enables you to store the first and last name of the employee along with
up to 12 children’s names. As long as the array size is big enough to hold the most
children that any employee has, this structure works; however, this is typically not an
optimal solution. Figure 2.7 shows what the memory usage of this structure would be



59

2

when a variable is declared. Notice that there is a great deal of memory allocated. If
most of the employees have only one or two kids, the majority of this allocated space
will never be used.

Figure 2.7. The employee_kid_tag structure for 12 kids—potentially a lot of wasted
space.

Variable-length structures offer a solution to this type of problem by enabling you to
change the number of elements in the array. If employee Sherman Smith has two kids,
you declare the array with two elements. If Dawn Johnson has six kids, you declare
the structure with six elements. Figure 2.8 shows how the memory usage should be.

As you can see in Figure 2.8, memory isn’t completely conserved because we have the
spaces at the end of each name; however, we did save space by only storing names when
we have to.

Declaring the structure so that there can be different numbers of children would be
done as follows:

struct employee_kids_tag{
    char first_name[15+1];
    char last_name [19+1];
    int  number_of_children;
    char child_name[];
};



60

Complex Data Types
DAYDAY

2

Figure 2.8. Variable-length structures—conserving memory usage.

Notice that two things have changed. First, we added an integer, number_of_children,
stating how many children there are. Without this, we would have a much harder time
knowing how many kids there are, and thus how big the structure is. The second
change is in the child_name array. There isn’t a number in the array! This signals that
it is a variable-length array. It will be up to you to determine how big it is. (Hence the
previously mentioned number_of_children.)

  Warning. Some compilers won’t allow you to declare an array without a
value. In these cases, you should leave the last member, child_name[], out
of the structure.

When Are Variable-Length Structures Used?
You might be thinking that it would be much easier to use a consistent number of array
elements. As long as you selected a size that meets a majority of your needs, you could
be happy. While this may suffice, there are many instances that you may find that you
need to use the variable-length structures. Although small or simple programs can
afford the luxury of wasting space, more complex programs cannot. In addition, many
programs that work with disk files require that you work with variable-length
structures.



61

2

Type

There are several examples of programs that use variable-length structures. Calendar
programs, programs that modify executable (EXE) files, programs that work with bit-
mapped graphics files, and word processor programs are just a few.

A Variable-Length Structure Example
The best way to understand the usage of variable-length files is to use them. The
following example will use a variable-length structure to create a journal entry. The
format of the journal entry will be as follows:

struct journal_entry_tag {
    int text_size;
    char text_entry[];
}

As you can see, this is a relatively simple structure. The first member of the structure
is an integer that tells the size of the following character array, text_entry. Listing 2.9
uses this structure.

Listing 2.9. Program using variable-length structure.

1:   /*  Program: list0209.c
2:    *  Author:  Bradley L. Jones
3:    *  Purpose: Demonstrates a variable length file.
4:    *=================================================*/
5:
6:   #include <stdio.h>
7:   #include <stdlib.h>
8:   #include <string.h>
9:
10:  typedef struct {
11:     int text_size;
12:     char text_entry[];
13:  } JOURNAL_ENTRY;
14:
15:  void main( void )
16:  {
17:      JOURNAL_ENTRY entry[10];
18:
19:      char  buffer[256];
20:      int   ctr;
21:
22:      FILE *out_file;
23:
24:      if(( out_file = fopen( “TMP_FILE.TXT”, “w+”)) == NULL )
25:      {
26:         printf(“\n\nError opening file.”);

continues



62

Complex Data Types
DAYDAY

2

Listing 2.9. continued

27:         exit(99);
28:      }
29:
30:      printf(“\n\nYou will be prompted to enter 10 strings.\n”);
31:
32:      for( ctr = 0; ctr < 10; ctr++ )
33:      {
34:         printf(“\nEnter string %d:\n”, ctr+1);
35:         gets(buffer);
36:         entry[ctr].text_size = strlen(buffer);
37:         fwrite( &entry[ctr].text_size, 1, sizeof( int), out_file);
38:         fwrite( buffer, 1, entry[ctr].text_size, out_file);
39:      }
40:
41:      printf(“\n\nTo view your file, type the following:”);
42:      printf(“\n\n   TYPE TMP_FILE.TXT”);
43:
44:      fclose(out_file);
45:  }

You will be prompted to enter 10 strings.

Enter string 1:
aaaa

Enter string 2:
BBBBBBBBBBBB

Enter string 3:
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Enter string 4:
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

Enter string 5:
EEE

Enter string 6:
FFFFFFFFFFFFFFFFFFFFF

Enter string 7:
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

Enter string 8:
HHHHHHHH

Output



63

2

Enter string 9:
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Enter string 10:
JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ

To view your file, type the following:

   TYPE TMP_FILE.TXT

Typing the TMP_FILE.TXT file displays the following:

__aaaa_ _BBBBBBBBBBBB__CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC_ _

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

__EEE__FFFFFFFFFFFFFFFFFFFFF__GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG__

HHHHHHHH__IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII__

JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ

You should note that the underscores in the output from typing TMP_FILE.TXT are
actually numeric values. These will appear as unusual symbols on your screen. This
listing isn’t exactly clear on using the variable-length structure. To accurately
demonstrate variable-length structures will take several pages of code. Later in this
book, several variable-length structures will be used. The previous output demon-
strates how a file can be created that applies to a simplistic variable-length structure.
You could easily reverse this program so that it reads the file that was created. You
could read each of these into the JOURNAL_ENTRY structures. You would need to
dynamically allocate space for the character array within the structure.

This program presents some interesting items. In line 22, a file pointer is declared.
This pointer is used in line 24 to point to the TMP_FILE.TXT file. This is the file
for the variable-length journal entries. Lines 37 and 38 write the information out to
the file. In line 37, the portions of the structure that are constant in size are written.
In this case, it is a single field. In line 38, the variable length portion is written out.
An exercise at the end of this chapter asks you to write a program that reads this file
and prints out the information.

Summary
Although a lot of what was presented today should have been familiar, some of the
material might have been new to you. Today began with a review of the basic data
types, the definition of the typedef statement and its use, followed by advanced data
types (or advanced groupings of data types). This included working with arrays,

Output



64

Complex Data Types
DAYDAY

2

structures, and unions. A review of pointers was also provided—simple pointers,
pointers to pointers, pointers to functions, and pointers to structures. The day moved
to arrays of structures before concluding with variable-length structures.

Q&A
Q Can you program in C without fully understanding pointers?

A Yes; however, you’ll be extremely limited in what you’ll be able to do.
Pointers are found in virtually every real-world application.

Q How many dimensions can an array have?

A The number of levels an array can have is compiler-dependent. It becomes
more confusing to use multidimensional arrays the more levels you use.
Most applications rarely need more than three levels.

Q How many levels of indirection can you have with pointers?

A As with arrays, you don’t want too many levels of indirection. You rarely go
more than three levels deep with pointers (pointer to a pointer to a pointer).
Although going two levels deep is not unusual (pointer to pointer), anything
more should be avoided if possible.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned.

Quiz
1. What are considered the basic data types?

2. What C keyword can be used to help increase the readability of your code?

3. What is the data type of a variable declared as a DWORD?

4. What are three ways of grouping data?

5. What is the value of NULL or the Null character?

6. Why is it important to know about word alignment?



65

2

7. What is a pointer?

8. How do you determine the address of a variable?

9. What is the difference between the following two prototypes?

return_type (*name)(parameter_list);

return_type *(name)(parameter_list);

10. What is a benefit of using variable-length structures?

Exercises
1. Write the code for the data type necessary to store a social security number

of the format 999-99-9999. Don’t use a simple string (character array).

2. Write the code for the data type necessary to store a type long variable called
number in the same area of memory as a string variable called string. The
length of string should be four characters.

3. Write a program that declares a pointer variable. The pointer variable should
be assigned its own address.

4. Write a program that declares and initializes a double-dimensioned array.
The program should also print the array to the screen.

5. How would you create a data element that could hold 10 social security
numbers (from Exercise 1)?

6. Modify Listing 2.1 to print the numeric array as characters. What is printed?

7. ON YOUR OWN: Write a program that reads the information in the
TMP_FILE.TXT created by Listing 2.9.

8. ON YOUR OWN: Write a program that sorts the TMP_FILE.TXT text
entries and writes them back out.

9. ON YOUR OWN: If you are using a Windows compiler, consult your
documentation for information on the Microsoft Windows file formats.
Most of the file formats used by Microsoft Windows employ variable-length
structures similar to those presented today. Another good reference book
would be Tom Swan’s book, Inside Windows File Formats from SAMS
Publishing.



66

Complex Data Types
DAYDAY

2


