
481

15

WEEK

33

1515
The User
Interface: Action
Bars

482

The User Interface: Action Bars
DAYDAY

15

On Day 14, you added menus to your application. This helped you produce a front
end to your application. In addition, it helped to provide boxes that listed selections
instead of requiring data entry. Today, you’ll expand on your menus by moving into
action bars. Today you will:

■ Learn what action bars are.

■ See how action bars work in conjunction with accelerator keys.

■ See how to add an action bar to your main menu.

■ See how to add an action bar to your entry and edit screens.

What Are Action Bars?
Action bars are menus containing options for various actions that your program can
perform. An action bar is generally placed at the top of the screen on the line just below
the title. Figure 15.1 presents an action bar menu.

Figure 15.1. An action bar.

As you can see, the File action bar item has a single option called Exit. When this
option is selected, the exiting routine will be called.

Many action bar items also have accelerator keys. An accelerator key is a keyboard key
that automatically causes an action to occur. If an action bar option has an accelerator
key, it’s usually listed in the action bar menu. In Figure 15.1, you can see that the Exit
action has an accelerator key of F3.

483

15
Standards in Action Bars

Most people choose to follow the same format and naming conventions in their action
bars. This provides a consistency for the user between applications. The naming of
action bar selections can even cross application types. For instance, a word processor
may have an action bar with a selection called File that allows files to be opened, closed,
printed, and more. A database program could also have a File action bar item with
these same options even though the file types are completely different. The actions
that these applications are performing are the same.

There are several action bar items that are prevalent in applications. File, Edit, View,
Options, and Help are a few action bar items; however, they aren’t the only ones that
can be used. For example, a word processor may also include action bar items such as
Insert, Format, Tools, and Table. However, keep in mind that File, Edit, View,
Options, and Help are common in many different types of applications. Each of these
action bar menu items has certain types of actions that should be categorized in their
action bar menus. You should create a new action bar item only when an item won’t
fit into one of these.

The File Action Bar Item
The File option should be used for actions that apply to an entire file. If your
application is going to enable the user to choose which file they are working with, then
possible options would be those listed in Table 15.1.

Table 15.1. Possible selection items for the File action bar
item’s menu.

Item Purpose

New Open a new file

Open... Open an existing file

Close Close the current file, but do not exit

Save Save the current file

Save as... Save the current file as a new name

Print Print the current files information

Exit Exit the current file

484

The User Interface: Action Bars
DAYDAY

15

If any of these actions apply to your application, you should use the item name
presented in the table. This will help your application be consistent with other
applications.

Note: In the Record of Records! application, a default file is being used.
The only File option that will be used is Exit.

Tip: On an entry and edit screen with an action bar, you should
always provide a File action bar option with at least the option to Exit.

The Edit Action Bar Item
The Edit option contains actions that modify the current information that is being
presented. The options that are presented here may vary depending on the type of
application. In working with a document in a word processor, the Edit options may
involve moving textual information around. This would be selection items such as
Copy, Cut, and Paste. In a database application, the Edit options may involve
manipulations to the current record. This could include Clear, Add, and Delete.
Table 15.2 presents many common selection items for an Edit action bar menu.

Table 15.2. Possible selection items for the Edit action bar
item’s menu.

Item Purpose

Undo Counteract the last action

Cut Remove a portion of the current screen

Copy Copy a portion of the current screen

Paste Insert the last Cut or Copied portion of the screen

Clear Remove a portion or all of the screen

Add (Database) Add the current information to the database
as a new record

485

15Update (Database) Update the corresponding database record with the
current screen information

Delete (Database) Delete the database record that corresponds to the
current screen record

(Non-database) Remove a portion of the screen

As you can see from Table 15.2, different selection items may be presented based on
the type of application; however, the overriding functionality is the same. For
example, deleting is always removing something. You should remember that the
wording of the options in your action bar menu should correspond to those presented
in the table if they are the same actions.

The View Action Bar Item
The View action bar item contains selections that enable you to look in different ways
at information from the current file. Again, different applications are going to provide
different view options. A word processor may have selection items such as Normal and
Page layout. A database application may have items such as Next and Previous.

In addition to options that display data, there may also be options that customize the
interface of your application. The View action bar menu may include options as
setting the tab stops in a word processing application, customizing the colors used in
the screen interface, and setting up accelerator keys. Table 15.3 contains the View
options that you will use in the Record of Records! application.

Table 15.3. Selection items for the View action bar item’s menu
for Record of Records!

Item Purpose

Find... Find a specific record and display

Next Find the next record and display

Previous Find the previous record and display

As you can see, each of the items in Table 15.3 presents a different record for viewing.
You may be wondering why these options aren’t in the File action bar menu because

Item Purpose

486

The User Interface: Action Bars
DAYDAY

15

they manipulate information in the file. The reason is because they are working
at a record level not a file level.

The Options Action Bar Item
The Options action bar item is used to present selection items that customize the user
interface. These are options that change what is or isn’t displayed to the user. An
example of an Option selection item would be an option to turn the command line
at the bottom of the screen on and off. This option doesn’t change what the
application does, it only changes what the user sees. Actions that customize the use of
the application fall under the View option.

An example of an Option action versus a View option is in order:

If there is an option to customize the accelerator keys that are displayed at the bottom
of the screen, then it falls in the View options because it is a customization of
functionality.

If there is an option to display or not display the accelerator keys, then it falls under
Options because this is a customization to what the user sees, not how to do it.

 Warning: Most programs confuse the use of View and Option.

The Help Action Bar Item
The Help option contains actions that are informational. Although you may think
that Help is as simple as just presenting some information, there is actually more to
it. The Help option will generally contain several options. Table 15.4 presents the
selection items commonly included on the Help action bar menu.

Table 15.4. Possible selection items for the Help action bar
item’s menu.

Item Purpose

Help for help... Presents information on using help

Extended help... Presents general information about the
current screen

487

15
Item Purpose

Keys help... Presents information on accelerator keys

Help index... Presents an index for the help information

Tutorial... Presents a connection to a tutorial program

About... Presents general information about the application

Note: Detailed information on each of these selections is presented on
Day 16 when the use of Help is covered in detail.

Other Action Bar Items
While the action bar items presented are the most common, they aren’t the only
options. All applications that have action bars should have a Help option. A File
option should also be included in most cases because it can provide a means of exiting
the application. Other options may include those that were mentioned earlier or
application-specific options.

Expert Tip: Always use the action bar items previously listed instead
of making up your own names. This will provide consistency with
other applications.

DO DON’T
DO follow the standard names presented here when creating your action
bars.

DON’T make up your own names for standard functions. This may confuse
the user of your application.

488

The User Interface: Action Bars
DAYDAY

15

Type

A Simple Action Bar in Action
In the Record of Records! application that you’ve been developing, there are several
action bars. On the main menu is a simple action bar that contains only a single
selection item, Help. In most cases, there will be more than a single item; however,
by having only a single item, it makes for a good introductory demonstration.

The Record of Records! application has followed the standard of setting the F10 key to
access the action bar. When you set up the new main menu on Day 14, the F10 key
was included as an exit key. If fact, in line 104 of Listing 14.4, a function call was
included in the case for F10. At that time, you were told to comment the line out. The
action bar functionality is like any other selected functionality in that once a key is
pressed, the action bar processes can be performed separately. The do_main_actionbar()
function can be created in a separate source file that is linked with the rest of the Record
of Records! files, or it can be added to the end of the RECOFREC.C listing.

Listing 15.1 presents the main menu’s action bar function in a separate listing. In
addition to incorporating this listing, you need to also make a few other subtle
changes. First, you need to uncomment the action bar lines in the RECORREC.C
listing (approximately lines 104 to 107). You should also include a do_main_actionbar()
prototype in the RECOFREC.H header file.

Listing 15.1. MMNUABAR.C. The main menu’s action
bar functions.

1: /*==
2: * Filename: mmnuabar.c
3: * RECORD OF RECORDS - Version 1.0
4: *
5: * Author: Bradley L. Jones
6: *
7: * Purpose: Action bar for main menu. This is a single
8: * menu. Functions for selections will need to
9: * be added later.
10: *
11: * Return: Return value is either key used to exit menu
12: * with the exception of F10 which is returned
13: * as Enter to re-display main menu.
14: *===*/
15:
16: #include <stdio.h>
17: #include “tyac.h”
18: #include “records.h”
19:

489

15

20: /*--------------------*
21: * prototypes *
22: *--------------------*/
23: #include “recofrec.h”
24:
25: static void do_something(char *msg);
26:
27: /*--*/
28:
29: int do_main_actionbar(void)
30: {
31: int rv = 0;
32: int menu_sel = 0;
33:
34: char *help_menu[4] = {
35: “ Help “, “1Hh”,
36: “ About “, “2Aa” };
37:
38: char MENU_EXIT_KEYS[MAX_KEYS] = {F3, F10, ESC_KEY};
39:
40: write_string(“ Help “,
41: ct.menu_high_fcol, ct.menu_high_bcol, 1, 2);
42: rv = display_menu(3, 4, SINGLE_BOX, help_menu, 4,
43: MENU_EXIT_KEYS, &menu_sel, NO_LR_ARROW,
44: SHADOW);
45:
46: switch(rv)
47: {
48: case ENTER_KEY: /* accept selection */
49: case CR:
50: switch(menu_sel)
51: {
52: case 1: /* Menu option 1 */
53: do_something(
54: “Main Menu Help...”);
55:
56: break;
57:
58: case 2: /* Menu option 2 */
59: do_something(
60: “An about box...”);
61:
62: break;
63:
64: default: /* continue looping */
65: boop();
66: break;
67: }
68:

continues

490

The User Interface: Action Bars
DAYDAY

15

69: rv = ENTER_KEY;
70: break;
71:
72: case F3: /* exiting */
73: case ESC_KEY:
74: break;
75:
76: case F10: /* action bar */
77: rv = ENTER_KEY;
78: break;
79:
80: default: boop();
81: break;
82: }
83: cursor_on();
84: return(rv);
85: }
86:
87: /*--*
88: * Generic function - temporary *
89: *--*/
90: static void do_something(char *msg)
91: {
92: display_msg_box(msg, ct.help_fcol, ct.help_bcol);
93: }

Listing 15.1. continued

Output

This code should look similar to the code in the menus that you created on
Day 14. In essence, an action bar with only one item is simply a menu that is
displayed near the top of the screen.

Because the action bar is being created before all the actions are developed, a generic
function will be used to fill the holes. For example, Help is not covered until Day 16.

Analysis

491

15
Instead of calling a function to do help, a generic function called do_something() has
been created. The do_something() function is prototyped in line 31 as a static void
function. Because the static modifier is used, only this listing will be able to use the
do_something() function that is included in lines 87 to 93. Other listings can have
their own versions of the do_something() function. In this listing, the do_something()
function simply displays a message that it receives as a parameter.

Tip: While not done in this book, if a function isn’t going to be used
by any source files other than the current one, you should add the
static modifier. This prevents any other source files from accessing
the function.

The main function begins in line 29. A variable is declared for the return value and
also for the action bar menu selection. In lines 34 to 44, you should notice that a menu
is being created in almost the same manner as those shown on Day 14. The one
exception is in line 40. The action bar word, “ Help “ is highlighted by using the
write_string() function and the highlight colors.

Line 46 reacts to the returned value from the menu. The returned value should be one
of the exit keys or Enter. Because this is a single menu action bar, the left and right
arrows are turned off. The switch statement in line 46 causes the appropriate action
to occur. If the Enter key was pressed, then the user made a selection. A second switch
statement routes the processing based on which action bar item the user selected
(lines 48 to 70). In lines 53 and 59, the do_something() function is called. When you
learn about adding help to your application on Day 16, you’ll want to replace these
function calls with calls to appropriate routines.

If F3 or Esc was pressed, you want to pass the key’s value back to the main menu.
When the main menu’s F10 case receives the values back, you’ll want to check for the
F3 key. It is assumed that if the F3 key is pressed on the main menu’s action bar, the
user is ready to exit the program. Following is the F10 case in the main menu
(RECOFREC.C):

 case F10: /* action bar */
 rv = do_main_actionbar();

 if(rv == F3)
 cont = FALSE;

 break;

492

The User Interface: Action Bars
DAYDAY

15

The F10 case, in lines 76 of Listing 15.1, is also unique. If the user presses F10 on the
action bar, then line 77 changes it to the Enter key. Because of this translation, there
will be no need to worry about the main menu reacting to the F10 key, which it
originally used to display the action bar. The final result of this is that the F10 key will
toggle between the main menu and the action bar.

The last two lines of the function are straightforward. The cursor is turned back on
with the cursor_on() function because the previous menu turned it off. Because
control is going to another menu, it isn’t necessary to turn the cursor back on;
however, not all action bars return to menus. Line 84 returns the value in rv, which
is either the exit key from the action bar or the Enter key.

Note: The functions called by the action bar will be the same functions
that could be accessed via accelerator keys. For example, selecting Exit off
of the main menu’s File action bar is the same as pressing F3. To ensure
that the functionality is the same, you should place it in a function of its
own. This function should then be called from both the F3 case in the
main menu and the F3 case in the File action bar. This becomes more
important in the entry and edit screen action bars.

A Multi-Menu Action Bar
The action bar presented in Listing 15.1 is an exception in that only one action bar
option existed. Most action bars will have at least two options. If you have two items,
the functionality becomes a little more complicated; however, the functionality is still
not too complex.

Two major differences exist in a multi-option action bar from that of the single-option
action bar already presented. The first difference is in the use of the left and right
arrows. In a multi-option action bar, the left and right arrows should move the cursor
from one action bar menu to the next. Consider an action bar with a File option
followed by an Edit option. If the File option menu is currently displayed and the user
presses the right arrow key, then the File option menu should be closed and the Edit
options menu opened. Each press of the right arrow key should move one action bar
menu to the right. If you are on the last menu, then you should circle back around to
the first menu. The left key should do the same, except it should move one menu to
the left for each press.

493

15

Type

The second change from the single menu should already be obvious from the
discussion on the right and left arrow keys. With a multi-option action bar, you need
to keep track of which Action bar option is current. Listing 15.3 presents the code for
the action bar in the Medium Codes screen of the Record of Records! application.
Because most of the functions that the action bar calls have not yet been developed,
a generic do_something() function has been used. The days following will begin to fill
in these functions with Help routines, File routines, and more.

Before entering Listing 15.3, you need to make a few minor changes to some of your
other listings. You should include the prototype for the Medium Code screen’s action
bar function in the RECOFREC.H header file. Listing 15.2 contains a RECOFREC.H
header file with prototypes for all three entry and edit screens action bars.

Listing 15.2. RECOFREC.H with the action bar
function prototypes.

1: /*==
2: * Filename: RECofREC.H
3: *
4: * Author: Bradley L. Jones & Gregory L. Guntle
5: *
6: * Purpose: Header file for RECORD of RECORDS! application
7: * This contains the function prototypes needed
8: * by more than one source file.
9: *===*/
10:
11: #ifndef _ _RECOFREC_H
12: #define _ _RECOFREC_H
13:
14: /*----------------------------*
15: * Prototypes from recofrec.c *
16: *----------------------------*/
17:
18: void draw_borders(char *);
19:
20: int do_medium_screen(void);
21: int do_albums_screen(void);
22: int do_groups_screen(void);
23: void display_msg_box(char *, int, int);
24: char yes_no_box(char *, int, int);
25: int zero_fill_field(char *, int);
26:
27: int do_main_actionbar(void);
28:
29:

continues

494

The User Interface: Action Bars
DAYDAY

15

30: /*------------------------------*
31: * Prototypes for medium screen *
32: *------------------------------*/
33:
34: int do_medium_actionbar(void);
35: void display_medium_help(void);
36:
37:
38: /*------------------------------*
39: * Prototypes for groups screen *
40: *------------------------------*/
41:
42: int do_groups_actionbar(void);
43: void display_groups_help(void);
44:
45: /*------------------------------*
46: * Prototypes for albums screen *
47: *------------------------------*/
48:
49: int do_albums_actionbar(void);
50: void display_albums_help(void);
51:
52:
53: #endif
54: /*===*
55: * end of header *
56: *===*/

As you can see, the action bar function for the Medium Code screen will be called
do_medium_actionbar(). A call to this function needs to be added to the Medium
Code screen’s listing, MEDIUM.C. You also need to add F10 as an exit key in the
get_medium_input_data() function. Following is the new set-up lines for getline()
followed by the new F10 case that should be added to MEDIUM.C:

/* Set up exit keys. */
static char fexit_keys[14] = { F1, F3, F4, F10,
 ESC_KEY, PAGE_DN, PAGE_UP, CR_KEY,
 TAB_KEY, ENTER_KEY, SHIFT_TAB,
 DN_ARROW, UP_ARROW, NULL };

static char *exit_keys = fexit_keys;
getline(SET_EXIT_KEYS, 0, 13, 0, 0, 0, exit_keys);

The new F10 case:

 case F10: /* action bar */
 rv = do_medium_actionbar();

Listing 15.2. continued

495

15

Type

continues

 if(rv == F3)
 {
 if((yes_no_box(“Do you want to exit?”,
 ct.db_fcol, ct.db_bcol)) == ‘Y’)
 {
 loop = FALSE;
 }
 }

 position = 0;
 break;

One other modification also needs to be made. In the function that draws the screen,
draw_medium_screen(), the addition of drawing the action bar options needs to be
made. This is a simple call to write_string as follows:

 write_string(“ File Edit Search Help”,
 ct.abar_fcol, ct.abar_bcol, 1, 2);

Once these modifications have been made, you’re ready to create the Medium Code
screen’s action bar. Listing 15.3 contains all you need. It is followed by the Screen
prints of each of the four menus.

Listing 15.3. MEDMABAR.C. The action bar for the
Medium Code screen.

1: /*==
2: * Filename: medmabar.c
3: * RECORD OF RECORDS - Version 1.0
4: *
5: * Author: Bradley L. Jones
6: *
7: * Purpose: Action bar for medium screen. This will
8: * contain multiple menus. The functions called
9: * by the menu selections may not be available
10: * until later days.
11: *
12: * Return: Return value is either key used to exit a menu
13: * with the exception of F10 which is returned
14: * as Enter to re-display main menu. In each menu
15: * the left and right keys will exit and move
16: * control to the right or left menu.
17: *===*/
18:
19:
20: #include <stdio.h>
21:

496

The User Interface: Action Bars
DAYDAY

15

22: #include “tyac.h”
23: #include “records.h”
24:
25: /*--------------------*
26: * prototypes *
27: *--------------------*/
28:
29: #include “recofrec.h”
30:
31: int do_medium_menu1(void);
32: int do_medium_menu2(void);
33: int do_medium_menu3(void);
34: int do_medium_menu4(void);
35:
36: static void do_something(char *);
37:
38: /*----------------------------*
39: * medium screen action bar *
40: *----------------------------*/
41:
42: int do_medium_actionbar(void)
43: {
44: int menu = 1;
45: int cont = TRUE;
46: int rv = 0;
47: char *abar_text ={“ File Edit Search Help “};
48:
49:
50: while(cont == TRUE)
51: {
52: write_string(abar_text, ct.abar_fcol, ct.abar_bcol, 1, 2);
53:
54: switch(menu)
55: {
56:
57: case 1: /* file menu */
58: write_string(“ File “, ct.menu_high_fcol,
59: ct.menu_high_bcol, 1, 2);
60:
61: rv = do_medium_menu1();
62: break;
63:
64: case 2: /* edit menu */
65: write_string(“ Edit “, ct.menu_high_fcol,
66: ct.menu_high_bcol, 1, 9);
67:
68: rv = do_medium_menu2();
69: break;
70:

Listing 15.3. continued

497

15

71: case 3: /* search menu */
72: write_string(“ Search “, ct.menu_high_fcol,
73: ct.menu_high_bcol, 1, 16);
74:
75: rv = do_medium_menu3();
76: break;
77:
78: case 4: /* Help menu */
79: write_string(“ Help “, ct.menu_high_fcol,
80: ct.menu_high_bcol, 1, 25);
81:
82: rv = do_medium_menu4();
83: break;
84:
85: default: /* error */
86: cont = FALSE;
87: break;
88: }
89:
90: switch(rv)
91: {
92: case LT_ARROW: menu--;
93: if(menu < 1)
94: menu = 4;
95: break;
96:
97: case RT_ARROW: menu++;
98: if(menu > 4)
99: menu = 1;
100: break;
101:
102: default: cont = FALSE;
103: break;
104: }
105: }
106: write_string(abar_text, ct.abar_fcol, ct.abar_bcol, 1, 2);
107: cursor_on();
108: return(rv);
109: }
110:
111:
112:
113: /*--------------------*
114: * do_menu 1 (File) *
115: *--------------------*/
116:
117: int do_medium_menu1(void)
118: {
119: int rv = 0;
120: int menu_sel = 0;

continues

498

The User Interface: Action Bars
DAYDAY

15

121: char *saved_screen = NULL;
122:
123: char *file_menu[2] = { “ Exit <F3> “, “1Ee” };
124: char exit_keys[MAX_KEYS] = {F3, F10, ESC_KEY};
125:
126: saved_screen = save_screen_area(0, 10, 0, 40);
127:
128: rv = display_menu(3, 4, SINGLE_BOX, file_menu, 2,
129: exit_keys, &menu_sel, LR_ARROW, SHADOW);
130:
131: switch(rv)
132: {
133: case ENTER_KEY: /* accept selection */
134: case CR:
135: rv = F3;
136: break;
137:
138: case F3: /* exiting */
139: case ESC_KEY:
140: case LT_ARROW: /* arrow keys */
141: case RT_ARROW:
142: break;
143:
144: case F10: /* exit action bar */
145: rv = ENTER_KEY;
146: break;
147:
148: default: boop();
149: break;
150: }
151: restore_screen_area(saved_screen);
152:
153: return(rv);
154: }
155:
156: /*--------------------*
157: * do_menu 2 (Edit) *
158: *--------------------*/
159:
160: int do_medium_menu2(void)
161: {
162: int rv = 0;
163: int menu_sel = 0;
164: char *saved_screen = NULL;
165:
166: char *edit_menu[8] = {
167: “ New “, “1Nn”,
168: “ Add <F4> “, “2Aa”,
169: “ Change <F5> “, “3Cc”,

Listing 15.3. continued

499

15

170: “ Delete <F6> “, “4Dd” };
171:
172: char exit_keys[MAX_KEYS] = {F3, F10, ESC_KEY};
173:
174: saved_screen = save_screen_area(1, 10, 8, 40);
175:
176: rv = display_menu(3, 11, SINGLE_BOX, edit_menu, 8,
177: exit_keys, &menu_sel, LR_ARROW, SHADOW);
178:
179: switch(rv)
180: {
181: case ENTER_KEY: /* accept selection */
182: case CR:
183: switch(menu_sel)
184: {
185: case 1: /* Clear the screen */
186: do_something(“CLEARING...”);
187: break;
188:
189:
190: case 2: /* Add a record */
191: do_something(“Adding...”);
192:
193: break;
194:
195: case 3: /* Update the current record */
196: do_something(“Updating...”);
197:
198: break;
199:
200: case 4: /* Deleting the current record */
201: do_something(“Deleting...”);
202:
203: break;
204:
205: default: /* continue looping */
206: boop();
207: break;
208: }
209:
210: rv = ENTER_KEY;
211: break;
212:
213: case F3: /* exiting */
214: case ESC_KEY:
215: case LT_ARROW: /* arrow keys */
216: case RT_ARROW:
217: break;
218:

continues

500

The User Interface: Action Bars
DAYDAY

15

219: case F10: /* action bar */
220: rv = ENTER_KEY;
221: break;
222:
223: default: boop();
224: break;
225: }
226: restore_screen_area(saved_screen);
227:
228: return(rv);
229: }
230:
231: /*----------------------*
232: * do menu 3 (Search) *
233: *----------------------*/
234:
235: int do_medium_menu3(void)
236: {
237: int rv = 0;
238: int menu_sel = 0;
239: char *saved_screen = NULL;
240:
241: char *search_menu[6] = {
242: “ Find... “, “1Ff”,
243: “ Next <F7> “, “2Nn”,
244: “ Previous <F8> “, “3Pp” };
245:
246: char exit_keys[MAX_KEYS] = {F3, F10, ESC_KEY};
247:
248: saved_screen = save_screen_area(1, 10, 0, 60);
249:
250: rv = display_menu(3, 18, SINGLE_BOX, search_menu, 6,
251: exit_keys, &menu_sel, LR_ARROW, SHADOW);
252:
253: switch(rv)
254: {
255: case ENTER_KEY: /* accept selection */
256: case CR:
257: switch(menu_sel)
258: {
259: case 1: /* Do find dialog */
260: do_something(“Find...”);
261:
262: break;
263:
264: case 2: /* Next Record */
265: do_something(“Next...”);
266:

Listing 15.3. continued

501

15

267: break;
268:
269: case 3: /* Previous Record */
270: do_something(“Previous...”);
271:
272: break;
273:
274: default: /* shouldn’t happen */
275: boop();
276: break;
277: }
278:
279: rv = ENTER_KEY;
280: break;
281:
282: case F3: /* exiting */
283: case ESC_KEY:
284: case LT_ARROW: /* arrow keys */
285: case RT_ARROW:
286: break;
287:
288: case F10: /* action bar */
289: rv = ENTER_KEY;
290: break;
291:
292: default: boop();
293: break;
294: }
295: restore_screen_area(saved_screen);
296:
297: return(rv);
298: }
299:
300: /*--------------------*
301: * do menu 4 (Help) *
302: *--------------------*/
303:
304: int do_medium_menu4(void)
305: {
306: int rv = 0;
307: int menu_sel = 0;
308: char *saved_screen = NULL;
309:
310: char *help_menu[4] = {
311: “ Help <F2> “, “1Hh”,
312: “ About “, “2Ee” };
313:
314: char exit_keys[MAX_KEYS] = {F3, F10, ESC_KEY};
315:

continues

502

The User Interface: Action Bars
DAYDAY

15

316: saved_screen = save_screen_area(1, 10, 0, 60);
317:
318: rv = display_menu(3, 27, SINGLE_BOX, help_menu, 4,
319: exit_keys, &menu_sel, LR_ARROW, SHADOW);
320:
321: switch(rv)
322: {
323: case ENTER_KEY: /* accept selection */
324: case CR:
325: switch(menu_sel)
326: {
327: case 1: /* Extended Help */
328: display_medium_help();
329:
330: break;
331:
332: case 2: /* About box */
333: do_something(“About box...”);
334:
335: break;
336:
337: default: /* continue looping */
338: boop();
339: break;
340: }
341:
342: break;
343:
344: case F3: /* exiting */
345: case ESC_KEY:
346: case LT_ARROW: /* arrow keys */
347: case RT_ARROW:
348: break;
349:
350: case F10: /* action bar */
351: rv = ENTER_KEY;
352: break;
353:
354: default: boop();
355: break;
356: }
357: restore_screen_area(saved_screen);
358:
359: return(rv);
360: }
361:
362:
363: /*--*
364: * Generic function - temporary *

Listing 15.3. continued

503

15

365: *--*/
366: static void do_something(char *msg)
367: {
368: display_msg_box(msg, ct.help_fcol, ct.help_bcol);
369: }

Output

504

The User Interface: Action Bars
DAYDAY

15

While this is a long listing, don’t be intimidated by it. Most of it is identical
to Listing 15.1. You’ll see this as the listing is explained.

Listing 15.3 starts out like most other listings. Lines 20 to 23 include the appropriate
headers. Line 29 includes the RECOFREC.H header file, which contains the
prototypes for the do_medium_actionbar() function (see Listing 15.2). Lines 31 to 34
contain four additional prototypes. These prototypes are for each of the action bar
options for the Medium Code screen. While I choose to use numbers, it may be better
to use descriptive names. For example, do_medium_menu1() will present the File action
bar menu. This could be named do_medium_abar_file(). You can choose whatever
name you feel most comfortable with.

Line 36 contains a prototype for the do_something() function. Again, the static
modifier was used so that this source file’s function would be separate from all the
other source file’s do_something() functions. When you complete the functionality
of the action bar on later days, you will want to remove the do_something() function.

Line 42 begins the do_medium_actionbar() function. Four variables are set up to be
used with the action bar. The first is menu. This variable keeps track of which menu
is currently being used. Figure 15.2 presents how the numbers relate to the Medium
Code screen’s action bar.

As you can see, File is 1, Edit is 2, Search is 3, and Help is 4. Because the File menu
is highlighted when you first use the action bar, the default value for menu is 1.

The remaining variables are easier to understand. A flag, cont, is needed to know when
to exit the action bar. The variable rv is declared to hold a return value. The last
variable is a string called abar_text. Because the text for the action bar will be written
several times, it has been consolidated into a single string.

Analysis

505

15

Figure 15.2. The value of menu for the Medium Code Screen’s action bar.

Lines 50 to 105 contain a while statement that keeps processing the action bar as long
as the flag, cont, is TRUE. The first step is to redraw the action bar across the top of the
screen. The first time into the action bar this is redundant; however, each iteration of
the while following needs the action bar redrawn to overwrite the previous high-
lighted option. A switch beginning in line 54 routes the processing to the current
menu. This will be a value from 1 to 4. As you can see by the cases, the processing for
each menu is nearly identical. The first step is to highlight the corresponding action
bar item by rewriting it in the highlight colors. For menu 1, File is rewritten, for
menu 2, Edit, for menu 3, Search, and for menu 4, Help.

Once the action bar item is highlighted, then the corresponding action bar selection
items menu is displayed. Each action bar items menu is in a separate function because
of its customized options. Each of these functions is formatted in the same manner
as the menu in Listing 15.1. The only major difference is that the left and right arrows
are enabled. If either of these arrow keys is pressed, they are returned to the calling case
in lines 57 to 83.

Each menu handles the selection from the user. When completed, control returns to
the do_medium_actionbar() case. A switch statement, in lines 90 to 104, evaluates the
exit key that was used by each menu. If the left arrow is used, then the current menu
is decremented (line 92). If the previous menu was 1, then the last menu will be made
current. The right arrow key works the same way except that, instead of decrementing
the current menu, it is incremented. If the last menu had been current, then the first
menu is made current. With the current menu reset, the next iteration of the while
loop is called.

If any other key had been used to exit the menu, then processing is done. The continue
flag, cont, is set to FALSE so that the while loop will end. Before returning to the calling

506

The User Interface: Action Bars
DAYDAY

15

program, the action bar is redrawn without any highlights and the cursor is turned on.
Once completed, the last key used is returned to the calling function in MEDIUMS.C.

Expert Tip: In Record of Records!, after an action bar selection item is
executed, control is returned to the main screen. You could return
control to the action bar by removing the default case in
lines 85 to 87—or at least line 86.

The rest of this listing contains the four action bar menus, each in its own function.
Each of these menus is similar to Listing 15.1 presented earlier with the exceptions
already noted.

Summary
Today’s material expanded upon yesterday’s. Once you understand menus, you’re
ready to add action bars to your applications. An action bar is the menu across the top
of a screen that contains several menus with actions that can be performed. Today, you
were presented with several standard action bar options and the standard selection
items that fall within them. Common action bar options include File, Edit, View,
Options, and Help. When naming your action bar items, you should try to use
standard names rather than make up your own. After covering the action bar naming
standards, examples of action bars were created. First, a single menu action bar was
developed. This was followed by an action bar for the Medium Code screen.

Q&A
Q Is it okay to make up your own names for action bar items?

A While many people believe that making up their own names for action bar
items is better than using the standard names, this isn’t really true. You may
believe that you are creating names that are more descriptive, and you may
be correct. However, by using names consistent with most other applica-
tions, your users will be more comfortable with the application. In addition,
they may actually have a better indication of the action than your seemingly
more descriptive name.

507

15
Q Are all the standard action bar names presented in today’s tables?

A Absolutely not. There are a multitude of standard names. I would suggest
looking at several other applications to get an understanding of many of the
standard action bar item names. In addition, you can contact companies
such as Microsoft Corporation and IBM in regard to standards that they
suggest.

Q Does the order of action bar items matter?

A It’s best to follow an order when presenting action bar items. The order that
the items were presented in this chapter is the standard order. This is File,
Edit, View, Options, and then Help. If you need to add additional items,
they should be placed between Options and Help. The Help option should
always be on the far right.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned.

Quiz
1. What is an action bar?

2. What are the most common action bar items?

3. What types of selections should be allowed in a File action bar menu?

4. What types of selections should be allowed in an Edit action bar menu?

5. What types of selections should be allowed in a View action bar menu?

6. What types of selections should be allowed in an Options action bar menu?

7. What types of selections should be allowed in a Help action bar menu?

8. Is a Help option necessary?

9. What do the left and right arrows do on an action bar?

10. Why are action bars called action bars rather than menu bars?

508

The User Interface: Action Bars
DAYDAY

15

Exercises
1. ON YOUR OWN: Review several commercial applications to see what

names they use in their action bars. If possible, look at different operating
environments or systems also. Many of the action bar names cross over from
DOS, OS/2, and Windows applications.

2. Create an action bar function for the Group Information screen.

3. ON YOUR OWN: Create an action bar function for the Musical Items
screens.

