Tapping Into
System Resources
via BIOS

WEEK

230

Tapping into System Resources via BIOS

On Day 4, you learned how to take advantage of the ANSI functions. As you saw, the
ANSI functions require the use of an external program to operate correctly. Today
you’ll learn a better way of manipulating the resources of your system by doing the
following:

O Review what was covered on Day 4.
Review what BIOS is.
Learn what an interrupt is.

Get an overview of the multitude of BIOS functions available.

O o o O

See how to use some of the interrupt services to work with your system.

System Resources in Review

System resources are resources provided by your computer system that enable you to
gain functionality by calling on them. By using system resources, you can create
programs that have much more use. In addition, some tasks would be nearly
impossible without them. Tasks that can be accomplished include working with the
video display, loading fonts, accessing disk drives, determining memory size, accessing
the keyboard, reading a joystick, and much more.

As stated on Day 4, system resources can’t be used without any concerns. The cost of
using system resources can vary. On Day 4, you learned that the largest concern with
using system resources should be portability. Depending on which systems resources
you access, you could greatly limit the portability of your programs. The resources that
will be presented today can be found on most IBM-compatible machines running
MS/DOS or an operating system that supports MS/DOS. A different computer
platform, such as a Macintosh, won’t be able to run the programs presented today.

Working with the Display

On Day 4, you were told that one of the characteristics of C is that it is flexible.
Typically, there are several ways to accomplish similar tasks. Each method that can be
implemented has its own prosand cons. Also on Day 4, you were presented with three
different methods of accessing or manipulating system resources. In particular, you
were shown how to manipulate the computer’s video monitor. The three areas that
were presented were:

0 The ANSI functions
0 Direct memory access
O BIOS

A Review of Using ANSI Functions

ANSI stands for American National Standards Institute. There are several different
areas of standards created by ANSI. The ANSI terminal standards can be used on an
IBM-compatible computer that has loaded the ANSI.SYS system driver. The
ANSI.SYS driver comes with Microsoft and PC DOS. Once installed, the ANSI
system driver enables the computer to use functions that allow for cursor movement,
display extended graphics, and redefining key values. Using the ANSI.SYS driver was
presented in detail on Day 4.

As you learned on Day 4, there are both pros and cons to using the ANSI functions.
The most obvious benefit is that using the ANSI functions is extremely simple. Once
the ANSI.SYS driver hasbeen installed, the functions are easily called. Another benefit
of the ANSI functions is that they are well documented. Because the ANSI driver
generally comes with the computer’s operating system, there is usually an abundance
of documentation.

As you may have seen, using ANSI functions isn’t without its downside. The most
negative impact is when you use an ANSI function on a system that doesn’t support
the ANSI terminal functions. If the program doesn’t support the ANSI functions, or
if the ANSI.SYS driver hasn’t been loaded, then gibberish may be displayed on the
screen. Because of this reliance on the ANSI.SYS driver, most programmers choose
toavoid the ANSI functions. The fact that not all operating systems support the ANSI
terminal emulation functions could also impact a decision to use ANSI functions.

A Review of Using Direct
Memory Access

Direct memory access was also discussed on Day 4. Memory is set aside for use by the
video display. This memory can be accessed directly to manipulate the graphics or
characters that are on the screen. Because this is memory that is directly mapped to
the video display, a change to the memory can be seen instantly on the screen. By
updating the video display’s memory directly, you can gain the fastest screen updates.

231

232

Tapping into System Resources via BIOS

This fast speed comes at the cost of portability. The memory set aside for the video
display isn’t always in the same locations. While it’s safe to assume that the memory
will be set aside, it’s not safe to assume where. Portability is lost because the area set
aside is not always guaranteed to be the same from computer system to computer
system. To use this direct video memory, the system must be 100-percent IBM-
compatible with an IBM PC’s hardware. It’s safe to assume that the same brand of
computer with the same type of hardware will have video memory stored in the same
location. Itisn’t safe to assume that all other computers will use the same location—
not even all IBM-compatible systems. In addition, memory for using a CGA monitor
isn’t always allocated in the same area that memory for a VGA monitor would be.

What Is BIOS?

The use of BIOS was also mentioned on Day 4 as the third alternative for
manipulating system resources. BIOS stands for Basic Input/Output System. Every
IBM-compatible MS/PC DOS computer operates with BIOS. BIOS is a set of service
routines that are activated by software interrupts. A software interrupt is an interrup-
tion caused by the currently running program that causes the operating system (DOS)
to respond. By going through these service routines, and therefore BIOS, you avoid
interacting directly with the computer’s hardware. This eliminates concerns, such as
the possibility of different locations for video memory, because the BIOS determines
where and what you need based on the interrupt you cause.

There are BIOS services for a multitude of different input and output activities. This
includes being able to manipulate the screen, the keyboard, printers, disks, mouse, and
more. In addition, there are services available to manipulate the system date and time.
Tables will be presented that will detail many of the available interrupts. For now, it’s
more important to know how to use them and why.

It’s better to use BIOS instead of direct memory video access or the ANSI functions.
Direct memory access has a downside that has already been described—you don’t
know for sure where the video memory will be located. The downside of the ANSI
functions is that the external device driver, ANSI.SYS, must be loaded for the
functions to work.

By going through the BIOS, you don’t need external device drivers, nor do you have
to determine where video memory is located. The BIOS takes care of that for you.

While all of this makes the BIOS calls sound like the perfect answer, there is a
downside to using BIOS also. The speed of going through BIOS isn’t going to be as
fast as accessing video memory directly. In addition, using the BIOS isn’'t going to be

5 -
PUBLISHING

as easy as using the ANSI functions. Neither of these negatives outweighs the
additional portability that you gain by using the BIOS functions. The speed difference
between BIOS and direct memory is negligible for most applications. In addition,
once you create a BIOS function, you can store it in your own library and never have
to worry about the underlying code. Another problem with BIOS is the portability
of accessing the interrupts. Different compilers use different commands. The differ-
ence in these commands is minimal between most compilers.

Do DON"T|

DO understand the differences among ANSI, direct memory, and BIOS
functions.

DON'T use BIOS functions if you plan to port your code to computers that
are not IBM-compatible.

Using BIOS

To work with BIOS, you simply set up any needed information and then call the
appropriate interrupts number. When you call an interrupt, you pass information
within registers. Don’t worry about registers at this time. In addition to passing
interrupt numbers, you may also need to pass function numbers. Function numbers
are more specific instructions to BIOS. Table 8.1, presented later today, lists some of
the major interrupts and their functions. For instance, interrupt 16 (0x10h in hex) is
an interrupt for video display functions. There are several different video display
functions that can be used. Table 8.2, which is also presented later today, lists several
of the specific functions. For instance, interrupt 0x10h (video display processes) used
with function 0x02h will set the cursor position. In some cases, there are even lower
breakdowns of functions into subfunctions. For example, the video interrupt 0x10h
has a function to work with the color pallet (0x10h), which has several subfunctions.
Subfunction 0x01h will set the screen’s border color.

Using the interrupt calls requires setting up information first. Following are two
structures that can be used to pass information to BIOS. These two structures are
followed by a union that combines the structures into one. This set of structures and
the related union are given as they appear in both the Borland and Microsoft
compilers:

233

Borland

Microsoft

®

234

Tapping into System Resources via BIOS

struct WORDREGS {
unsigned int ax, bx, cx, dx, si, di, cflag, flags;

¥

struct BYTEREGS {
unsigned char al, ah, bl, bh, cl, ch, dI, dh;
};

union REGS {
struct WORDREGS X;
struct BYTEREGS h;
¥

/* word registers */

struct _WORDREGS {
unsigned Int ax;
unsigned iInt bx;
unsigned int cx;
unsigned iInt dx;
unsigned iInt si;
unsigned int di;
unsigned int cflag;

3
/* byte registers */

struct _BYTEREGS {
unsigned char al, ah;
unsigned char bl, bh;
unsigned char cl, ch;
unsigned char dl, dh;

¥

/* general purpose registers union -
* overlays the corresponding word and byte registers.
*/

union _REGS {

struct _WORDREGS x;

struct _BYTEREGS h;

};
Asyou can see, regardless of the compiler, these are set up in the same manner. Naming
may be a little different so you will want to check your compiler for specific names to
use. Within the examples presented in this book, the following code fragment will be
included. Even if you have the Borland or Microsoft compilers, you can include the
following, or if you wish, you can use the structures declared in your compiler.

Note: The structures shown previously are defined in the DOS.H header
file in the include directory of the corresponding compiler. If your
compiler is ANSI-compatible, it should have similar declarations in its
DOS.H header file.

ﬂpe Listing 8.1. BIOSREGS.H.
1: /* Header: BIOSREGS.H
2: * Purpose: Include generic structures for BIOS registers
3: e */
4: #ifdef __BIOSREGS_H
5: #define __BIOSREGS H 1
6:
7: struct XREG
8: {
9: unsigned int ax;
10: unsigned int bx;
11: unsigned int cx;
12: unsigned int dx;
13: unsigned iInt si;
14: unsigned int di;
15: unsigned int cflag
16: 3};
17:
18: struct HREG
19: {
20: unsigned char al, ah;
21: unsigned char bl, bh;
22: unsigned char cl, ch;
23: unsigned char dl, dh;
24: %}
25:
26: union REGS
27: {
28: struct XREG x;
29: struct HREG h;
30: 3}
31:
32: #endif

m This is just a header file so there isn’t any output. As you can see, the xres and
)’5 HREG Structures are virtually identical to what was presented from the Borland
and Microsoft compilers earlier. This header file should be compatible with
either of those compilers, along with any other DOS-based compiler. The ReGs union

235

236

Tapping into System Resources via BIOS

declared in lines 26 to 32 will be used when calling B1os. You should be aware that
XREG and HReG are used for different reasons. The use of these will be covered later. For
now, remember that Recs is a union, which means that you can use XReG or HREG, but
not both at the same time.

At this point, you may feel somewhat lost and confused. To help clear up what has
been presented so far, here are a few examples. Listing 8.2 presentsan example of using
an interrupt to get the current date via an interrupt call to Bios.

ﬂpe Listing 8.2. LIST0802. Using BIOS interrupt call.

: /* Program: LIST0802.c

* Author: Bradley L. Jones

* Purpose: Demonstrates a BIOS function to get current

* date.

* */

#include “biosregs.h”
#include <dos.h>
#include <stdio.h>

O©CoO~NOOUODMWNLE

11: /*** Function prototypes ***/
12: void current_date(int *month, int *day, int *year);

13:

14: void main(void)

15: {

16: int month, day, year;

17: printf(“\nDetermining the current date...”);
18:

19: current_date(&month, &day, &year);

20:

21: printf(“\n\nThe current date is: %d/%d/%d.”, month, day, year);
22: %}

23:

24: void current_date(int *month, int *day, int *year)
25: {

26: union REGS inregs, outregs;

27: inregs.h.ah = 0x2a;

28:

29: int86(0x21, &inregs, &outregs);

30:

31: *month = outregs.h.dh;

32: *day = outregs.h.dl;

33: *year = outregs.X.CX;

34: %}

Note: Line 29 uses a non-ANSI-compatible function. This means that
some compilers may use a different name for the intse() function.
Microsoft documents the use of _intse(); however, int8s() works.
Borland uses intge(). Consult your function reference for specific
information on your compiler. For the remainder of this book, the
function name of intas() will be used; however, you should be able to
replace it with your compiler’s comparable command. In the case of the
Microsoft compiler, simply add the underscore.

Determining the current date...

The current date is: 12/22/1993.

screen instead of 12/22/1993. The date is received via an interrupt call. In this

program, two values are declared to be of type Recs. Remember that Recs is the
union that holds the register values (see Listing 8.1). The inregs union is used to hold
the values going into the interrupt call. The outregs variable is used to hold the values
being returned.

To get the date, the function number 0x2Ah (33 decimal) is used with a call to BIOS.
The function number goes into the ah register. The ah register is a part of the n
structure of the inregs REGs union. The function 0x2Ah isa function within interrupt
0x21h. Line 27 sets this function number into the ah register. Line 29 calls the BIOS
interrupt using intge(). If you are using a Microsoft compiler, remember that you
may need to use _intse() instead.

Outpu
Analw When you run this program, you should end up with the current date on your

The intgs () function passes the interrupt, the registers that are going into and coming
out from BIOS. Once called, the values in the outregs variable can be used. Lines 31,
32, and 33 get the values for the day, month, and year from these outregs registers.

Asyou progress through the rest of thisbook, several functions will be developed using
BIOSinterrupt calls. On Day 7, you learned to work with libraries. Many of the BIOS
functions that you create will be useful in many of your programs. You should create
a library of all of your BIOS functions.

BI1OS and the Cursor

On Day 4, you learned to use the ANSI.SYS driver to place the cursor at different
locations on the screen. Following are two functions that are similar to two ANSI

237

238

Tapping into System Resources via BIOS

functions used on Day 4. These two functions are cursor() in Listing 8.3, which
places the cursor, and get_cursor() in Listing 8.4, which gets the cursor’s current
location. In addition, Listing 8.5 demonstrates the use of these two functions.

Listing 8.3. PCURSOR.C. Placing the cursor at screen

*/

ﬂpe coordinates.
1: /* Program: PCURSOR.C
2: * Author: Bradley L. Jones
3: * Purpose: Demonstrates a BIOS function to position the
4: * cursor on the screen.
5: * Note: This function places the cursor at a given
6: * location on the screen. The upper left position
7: * of the screen is considered (0,0) not (1,1)
8: *
9:

10: #include “biosregs.h”
11: #include <dos.h>

12:

13: void cursor(int row, int column);
14:

15: wvoid cursor(int row, int column)
16: {

17: union REGS inregs;

18:

19: inregs.h.ah = 0x02;

20: inregs.h.bh = 0;

21: inregs.-h.dh = row;

22: inregs.h.dl = column;

23:

24: int86(0x10, &inregs, &inregs);
25: }

Type Listing 8.4. GCURSOR.C. Getting the coordinates of the
) cursor.

1: /* Program: GCURSOR.C

2: * Author: Bradley L. Jones

3: * Purpose: Demonstrates a BIOS function to get the position
4: * of the cursor on the screen.

5: * Note: This function considers the upper left position
6: * of the screen to be (0,0) not (1,1)

7: * */
8:

9: #include “biosregs.h”

10: #include <dos.h>

11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

void get_cursor(int *row, int *column);

void get_cursor(int *row, int *column)

{

union REGS inregs;

inregs.h.ah
inregs.h.bh

0x03;
0;

int86(0x10, &inregs, &inregs);

*row (int) inregs.h.dh;
*column = (int) inregs.h.dl;

\<I
=]
D

Listing 8.5. LIST0O805.C. Using the BIOS cursor
functions.

O©CoO~NOOUMWNLE

WRNNNNNNNNNNRPERERRRRRERRR
COPMVNOURWNPLPOOONOUNWNEREO:

/* Program: LIST0805.c

* Author: Bradley L. Jones

* Purpose: Demonstrates the use of the cursor() and

* get_cursor() functions.

* */

#include <stdio.h>

/* ____________________________________ *
* Function Prototypes *
____________________________________ */

void get_cursor(int *row, int *column);
void cursor(int row, int column);
void main(void);

void main(void)
{
int row, column;

get_cursor(&row, &column);

cursor(10, 40);
printf(“x(10,40), 10, 40);

cursor(0, 0);
printf(“x(0,0)™);

cursor(1, 1);
printf(“x(1,1)™);

continues

239

240

Tapping into System Resources via BIOS

Listing 8.5. continued

<8, 8>
>xd1,1585
§(2,B)

31:

32: cursor(24, 70);

33: printf(“x(24,70));

34:

35: cursor(row, column);

36: printf(“x(%d,%d)”, row, column);
37:

38: 3}

x¢18.40)

x£24.78>

AnalySI TocompileListing8.5, youneed to include the PCURSOR.Cand GCURSOR.C

in your compile line. If you are compiling from the command line, this would
require entering the following (TCC should be replaced with your compiler’s
command):

TCC LIST0805.C PCURSOR.C GCURSOR.C

An alternative to this is to create a library and link it with LIST0805 as shown on
Day 7.

The outputyou receive from running this program may vary just alittle. Thisprogram
doesn’t clear the screen before it starts, therefore, any information that was on the
screen before the program is executed will remain. In the output shown here, you can
see some of the remains of the command to run the program (second line of output).

Notice that the x marks where the cursor was placed. Listing 8.5 is extremely simple.
Line 21 starts the program by getting the position of the cursor so that we can put it
back when the program ends. Lines 23 to 36 call the cursor() function and then print
the value of the location. The last call to cursor() positions the cursor back where it
was when the program started.

The PCURSOR.C listing (Listing 8.3) contains the cursor () function. This function
uses an interrupt to BIOS to place the cursor. Line 10 includes the registers that were
presented earlier today. Line 11 includes the DOS.H header file that contains the
function prototype for the interrupt function in line 24. Line 13 contains the
prototype for the cursor function. If you are creating a library of these functions, you
should create a header file that contains all of the function prototypes for all of the
functions in your library. Line 19 sets the an register to the function number 2. The
bh register is set to 0. If you were working with multiple video pages, then this would
be set to the number of the video page. Lines 21 and 22 contain dh and d1, which are
set to the values passed to the cursor) function in the rowand cotumn variables. This
is the actual row and column where the cursor will be placed. Line 24 wraps this
function up by calling the intse() function. Interrupt 16 (0x10h) is called with the
values that were set. This causes the cursor to be placed.

The get_cursor(function in Listing 8.4 is similar to the cursor () function. The big
difference is that function 3 is placed in the an register instead of function 2. The bh
register is still set to the video page number. Because we’re not doing video paging,
this function sets the bh register to 0. The intge() function is then called in line 21
to finally set the cursor position. Once the BIOS function is called, the dh and d1
registers contain the values for the row and column value of the cursor. These values
are placed in the variables that are pointed to by row and column.

In addition to getting and putting the cursor, you can also change the cursor’s shape.
Listing 8.6 presents a function that allows you to manipulate the cursor. In addition,
Listings 8.7 and 8.8 show this new function in action. Listings 8.7 and 8.8 should be
compiled independently. Each should link in the cursor code.

|T7e Listing 8.6. set_cursor_size(), manipulating the cursor’s
shape.
Rty shap
1: /* Program: SCURSOR.C
2: * Authors: Bradley L. Jones
3: * Gregory L. Guntle
4: * Purpose: BIOS function to set the cursor size.
5: * */
6:
7: #include <dos.h>
8:
9: #define SET_CURSOR_SIZE 0x01
10: #define BIOS_VIDEO 0x10
11:
12: void set_cursor_size(int start, int end)
13: {

continues

241

242

Tapping into System Resources via BIOS

Listing 8.6. continued

14:
15:
16:
17:
18:
19:
20:

union REGS inregs;

inregs.-h.ah = SET_CURSOR_SIZE;
inregs.h.ch = start;

inregs.h.cl = end;

int86(BI0S_VIDEO, &inregs, &inregs);

’7 Listing 8.7. BIGCURS.C. Using the set_cursor_size()
Type function.

1: /* Program: BIGCURS.c

2: * Authors: Bradley L. Jones

3: * Gregory L. Guntle

4: * Purpose: Changes the cursor to a big cursor.

5: * */

6:

7: /*** prototype ***/

8: void set_cursor_size(int, int);

9:

10: int main(void)

11: {

12: set_cursor_size(1, 8);

13: return O;

14: 3}

Listing 8.8. SMLCURS.C. Using the set_cursor_size()
function.

O©CoO~NOOUAWNLPRE

/* Program: SMLCURS.c
* Authors: Bradley L. Jones

* Gregory L. Guntle
* Purpose: Changes the cursor to a small cursor.
* */

/*** prototype ***/
void set_cursor_size(int, int);

int main(void)

{
set_cursor_size(7, 8);
return O;

}

N Note: There is no output for these two programs. See the analysis.

Anal 1 Listings 8.7 and 8.8 both use the set_cursor_size() function presented in

)’Sl Listing 8.6 to change the size of the cursor. Listing 8.7, BIGCURS.C, is a

~ program that calls the set_cursor_size() function to change the cursor to a
large block. After running BIGCURS.C, your cursor will be replaced with a large
cursor. The SMLCURS.C program is similar, except that it sets the cursor to a small
underscore.

Both of these programs operate by passing two values to the set_cursor_size()
function. The set_cursor_size() functionin Listing 8.6 is similar to the other BIOS
functions. In line 16, the an register is set with the function number that will be set.
This listing differs in that a defined constant helps to make the setting of the function
easier to understand. An additional defined constant, B1os_vipeo, also helps to make
the program easier to read. Defined constants such as these can be placed in a header
file and included in several of your functions.

The set_cursor_size() acceptstwo parameters, startand end. These valuesare used
to change the size of the cursor. As you can see in BIGCURS.C, setting the start to
1 and the end to 8, you get a large cursor. Setting the start to 7 and the end to 8
provides a more traditionally sized cursor as shown in the SMLCURS.C listing.

Tip: Put all of your related BIOS functions into a library. (This will
\ be an exercise.)
N

Expert Tip: As you should begin to see, BIOS functions are very
\ powerful. You will be creating several BIOS functions over the next
4 few days. You will see these functions in use during the development

of an application in the second half of this book. Most of these
functions will be useful long after you are done with this book.

243

e)
)
3%
=)

244

87

® DAY ®

Tapping into System Resources via BIOS

Using BI1OS for Other Functions

So far you have seen only a single date function and a few cursor functions. These
functions barely scratch the surface of what functions are available by using interrupt
routines. The multitude of different interrupts available is dependent upon your
system and the systems that you’re running the programs on. Table 8.1 lists the
common interrupts and the areas they cover. Many of the interrupt functions that
should be available using these interrupts are listed in Table 8.2.

Table 8.1. The ROM BIOS interrupts.

Interrupt Function Types

16 (0x10h) Video display functions

17 (Ox11h) Computer equipment function
18 (0x12h) Conventional memory function
19 (0x13h) Disk functions

20 (0x14h) Serial communication port functions
21 (0x15h) 1/0 subsystem functions

22 (0x16h) Keyboard functions

23 (0x17h) Parallel port functions

24 (0x18h) ROM BASIC function

25 (0x19h) System reboot function

26 (0x1Ah) Clock driver functions

51 (0x33h) Mouse functions

Table 8.2. The ROM BIOS interrupts.
Function (SubFunction)

Number (Hex)

Interrupt 16 (0x10h)
0 (0x00h)
1 (0x01h)

Set video mode

Set type of cursor

Function (SubFunction) Number (Hex)

Set position of cursor 2 (0x02h)

Get position of cursor 3 (0x03h)

Get position of light pen 4 (0x04h)

Set display page 5 (0x05h)

Scroll window up 6 (0x06h)

Scroll window down 7 (0x07h)

Get char/attribute where cursor is located 8 (0x08h)

Put char/attribute where cursor is located 9 (0x09h)

Put character where cursor is located 10 (Ox0Ah)

Set background, border, and palette 11 (0x0Bh)

Write a pixel 12 (0x0Ch)

Read a pixel 13 (0x0Dh)

Using teletype mode, write a character 14 (OxOEh)

Determine video mode 15 (0xOFh)

Set pallet 15 0 (0x00h)
Set border 15 1 (0x01h)
Set both, pallet and border 15 2 (0x02h)
Toggle bit for blink/intensity 15 3 (0x03h)
Determine video mode 15

Set palette 16 (0x10h) 0 (0x00h)
Set color of border 16 1 (0x01h)
Set both, palette and border 16 2 (0x02h)
Toggle bit for blink/intensity 16 3 (0x03h)
Get palette 16 7 (0x07h)
Get color of border 16 8 (0x08h)

continues

245

e)
)
3%
=)

246

® DAY ®

87

Tapping into System Resources via BIOS

Table 8.2. continued

Function (SubFunction)

Number (Hex)

Get both, palette and border

Set color register

Set a block of color registers

Set state of color page

Get color register

Get block of color registers

Get state of color page

Set gray-scale values

Load a user font

Load ROM 8x14 font

Load ROM 8x8 font

Set block specifier

Load ROM 8x16 font

Load user font, reprogram controller

Load ROM 8x14 font, reprogram controller
Load ROM 8x8 font, reprogram controller
Load ROM 8x16 font, reprogram controller
Set Interrupt 31 (1Fh) pointer

Set Interrupt 67 (43h) for a user’s font

Set Interrupt 67 (43h) for ROM 8x14 font
Set Interrupt 67 (43h) for ROM 8x8 font
Set Interrupt 67 (43h) for ROM 8x16 font
Get information on font

Get information on configuration

Select alternate print screen

16
16
16
16
16
16
16
16
17 (Ox11h)
17
17
17
17
17
17
17
17
17
17
17
17
17
17
18 (0x12h)
18

9 (0x09h)

16 (Ox10h)
18 (Ox12h)
19 (0x13h)
21 (0x15h)
23 (0x17h)
26 (Ox1Ah)
27 (Ox1Bh)
0 (0x00h)

1 (0x01h)

2 (0x02h)

3 (0x03h)

4 (0x04h)

16 (Ox10h)
17 (0x11h)
18 (Ox12h)
20 (0x14h)
32 (0x20h)
33 (0x21h)
34 (0x22h)
35 (0x23h)
36 (0x24h)
18 (0x30h)
16 (0x10h)
32 (0x20h)

Function (SubFunction)

Number (Hex)

Set scan lines 18
Enable or disable loading palette 18
Enable or disable the video 18
Enable or disable gray-scale summing 18
Enable or disable cursor emulation 18
Switch active display 18
Enable or disable screen refresh 18
Write string in teletype mode 19 (0x13h)
Determine or set display combination code 26 (0x1Ah)
Get information on state/functionality 27 (0x1Bh)
Save or restore the video state 28 (0x1Ch)

Interrupt 17 (0x11h)

Get equipment configuration

Interrupt 18 (0x12h)

Get size of conventional memory

(Disk drive functions)
Reset the disk system
Get status of disk system
Read a sector

Write a sector

Verify a sector

Format a track

Format a bad track

Format a drive

Interrupt 19 (0x13h)

0 (0x00h)
1 (0x01h)
2 (0x02h)
3 (0x03h)
4 (0x04h)
5 (0x05h)
6 (0x06h)
7 (0x07h)

48 (0x30h)
49 (0x31h)
50 (0x32h)
51 (0x33h)
52 (0x34h)
53 (0x35h)
54 (0x36h)

continues

247

e)
)
3%
=)

® DAY ®

248

87

Tapping into System Resources via BIOS

Table 8.2. continued

Function (SubFunction)

Number (Hex)

Get the drive parameters
Initialize the fixed disk

Read a long sector

Write a long sector

Do a seek

Reset the fixed disk

Read sector buffer

Write sector buffer

Get the drive status
Recalibrate the drive
Controller RAM diagnostic
Controller drive diagnostic
Controller internal diagnostic
Get the type of disk

Get status of disk change

Set the disk type

Set the media type for format
Park drive heads

Format drive (ESDI)

8 (0x08h)

9 (0x09h)

10 (Ox0Ah)
11 (0x0Bh)
12 (0x0Ch)
13 (0x0Dh)
14 (OXOEh)
15 (OXOFh)
16 (Ox10h)
17 (Ox11h)
18 (Ox12h)
19 (0x13h)
20 (Ox14h)
21 (0x15h)
22 (0x16h)
23 (0x17h)
24 (0x18h)
25 (0x19h)
26 (Ox1Ah)

Interrupt 20 (0x14h)

Initialize the serial port

Write a character to the serial port

Read a character from the serial port

Determine serial port status

0 (0x00h)
1 (0x01h)
2 (0x02h)
3 (0x03h)

Function (SubFunction)

Number (Hex)

Extended initialize serial port

Extended serial port control

4 (0x04h)
5 (0x05h)

Interrupt 21 (0x15h)

Turn cassette motor on

Turn cassette motor off

Read from cassette

Write to cassette

Intercept keyboard

Event to wait

Read from joystick

SysReq key press

Pause (delay)

Move an extended memory block
Determine extended memory size
Start protected mode

Have device wait

Get the system environment

Determine the address of the extended

BIOS data area

Pointing device functions

0 (0x00h)

1 (0x01h)

2 (0x02h)

3 (0x03h)
79 (Ox4Fh)
131 (0x83h)
132 (0x84h)
133 (0x85h)
134 (0x86h)
135 (0x87h)
136 (0x88h)
137 (0x89h)
144 (0x90h)
192 (OxCOh)

193 (0xC1h)
194 (0xC2h)

Interrupt 22 (0x16h)

(Keyboard functions)

Read a character from the keyboard

Get the status of the keyboard
Get keyboard flags

0 (0x00h)
1 (0x01h)
2 (0x02h)

continues

249

I © DAY ®
8 Tapping into System Resources via BIOS
v

Table 8.2. continued

Function (SubFunction) Number (Hex)
Set rate for repeat 3 (0x03h)

Set the keyboard to click 4 (0x04h)

Push a character and scan code 5 (0x05h)

Read a character (enhanced keyboard) 16 (0x10h)

Get status of keyboard (enhanced keyboard) 17 (0x11h)
Get keyboard flags (enhanced keyboard) 18 (0x12h)

Interrupt 23 (0x17h)
(Parallel port functions)

Write a character to the parallel port 0 (0x00h)
Initialize parallel port 1 (0x01h)
Get status of parallel (print) port 2 (0x02h)

Interrupt 24 (0x18h)
(ROM BASIC)

Interrupt 25 (0x19h)

Re-boot the computer system.

Interrupt 26 (Ox1Ah)

(CMOS clock driver)

Determine tick count 1 (0x00h)
Set tick count 2 (0x02h)
Determine the time 3 (0x03h)
Set the time 4 (0x04h)
Determine the date 5 (0x05h)
Set the date 6 (0x06h)
Set the alarm 7 (0x07h)

250

Function (SubFunction) Number (Hex)
Reset the alarm 8 (0x08h)
Set the sound source 128 (0x80h)

Interrupt 51 (0x33h)

(Mouse functions)

Reset and get mouse status 0 (0x00h)
Display the mouse pointer 1 (0x01h)
Hide the mouse pointer 2 (0x02h)
Determine mouse position and button status 3 (0x03h)
Set the mouse pointer position 4 (0x04h)
Determine the button press information 5 (0x05h)
Determine the button release information 6 (0x06h)
Set the horizontal limits for the pointer 7 (0x07h)
Set the vertical limits for the pointer 8 (0x08h)
Set the shape of the pointer (graphics) 9 (0x09h)
Set the pointer type (text) 10 (0x0Ah)
Read the mouse motion 11 (Ox0Bh)
Set a user-defined mouse event handler 12 (0x0Ch)
Light pen emulation on 13 (0x0Dh)
Light pen emulation off 14 (OxOEh)
Set exclusion area for mouse pointer 16 (0x10h)
Set threshold for double speed 19 (0x13h)

Switch user-defined event handlers for mouse 20 (0x14h)
Determine save state buffer size for mouse 21 (0x15h)
Save the mouse’s driver state 22 (0x16h)
Restore the mouse’s driver state 23 (0x17h)

continues

251

RS @ DAY ®

8 Tapping into System Resources via BIOS
v

Table 8.2. continued
Function (SubFunction) Number (Hex)

Set an alternate mouse event handler 24 (0x18h)

Determine address of alternate event handler 25 (0x19h)

Set the mouse’s sensitivity 26 (0Ox1Ah)
Get the mouse’s sensitivity 27 (0x1Bh)
Set the mouse’s interrupt rate 28 (0x1Ch)
Select a pointer page 29 (0x1Dh)
Determine the pointer page 30 (Ox1Eh)
Disable the mouse driver 31 (Ox1Fh)
Enable the mouse driver 32 (0x20h)
Reset the mouse driver 33 (0x21h)
Set the mouse driver message language 34 (0x22h)
Get the language number 35 (0x23h)
Get information on mouse 36 (0x24h)

It is beyond the scope of this book to provide detailed examples of using each and every
interrupt, their functions, and all of their subfunctions. A few of these interrupts will
be used in functions presented in the next section. In addition, many of the interrupts
will be used as this book progresses.

Note: If you want more information on BIOS interrupts, there are several
other books available that go into much more detail. A few to consider are
Jack Purdum’s C Programmer’s Toolkit and DOS Programmer’s Reference
both published by Que Corporation. In addition, there is the C Program-
mers Guide to NetBios, IPX, and SPX by SAMS Publishing. Many books
on assembly language also talk about the BIOS functions.

252

Examples of Using BIOS

This section contains a couple of additional BIOS functions that you may find useful.
The first function, keyhit(), determines if a character has been entered into the
keyboard. If a character has not been entered, the program continues on. The
keyhit() function will be presented in Listing 8.9. The second function clears the
keyboard and waits for a keyhit. This function, kbwait(), will be useful when you need
to wait for a keystroke and you need to remove any characters that a user may have
typed ahead. The kbwait() function is presented in Listing 8.10. As stated earlier,
several additional functions will be presented throughout the rest of this book.

li Listing 8.9. keyhit(). A function to determine if a
ﬂpe keyboard character has been pressed.

1: /* Program: KEYHIT.C

2: * Authors: Bradley L. Jones

3: * Gregory L. Guntle

4: * Purpose: BIOS function to determine if a key has been
5: * hit.

6: * Return: O - key not hit

7: * # - key that was hit.

8: * IT # > 0x100, then key is a scan code.
9: * */
10:

11: #include <dos.h>

12:

13: int keyhit(void)

14: {

15: int flag;

16: union REGS inregs;

17:

18: inregs.h.ah = 0x06;

19: inregs.h.dl = OxFF;

20: flag = int86(0x21, &inregs, &inregs);

21:

22: if((flag & 0x40) == 0)

23: {

24: if(inregs.h.al == 0)

25: {

26: /* extended character, get second half */
27: inregs.h.ah = 0x06;

28: inregs.h.dl = OxFF;

29: int86(0x21, &inregs, &inregs);

30: return(inregs.h.al + 0x100);

31: 3}

32: else

33: {

continues

253

254

Tapping into System Resources via BIOS

Listing 8.9. continued

34:
35:
36:
37:
38:
39:
40:
41:

return inregs.h.al; /* the key hit */

}
}

else

{

return 0; /* key not hit */

}

’ﬁ Listing 8.10. kbwait(). A function to clear the keyboard
Lyp buffer.

1: /* Program: KBWAIT.C

2: * Authors: Bradley L. Jones

3: * Gregory L. Guntle

4: * Purpose: BIOS function to clear the keyboard buffer

5: * and wait for a key to be pressed.

6: * */

7:

8: #include <dos.h>

9: #include <stdio.h>

10:

11: void kbwait(void)

12: {

13: union REGS inregs;

14:

15: inregs.h.ah = 0x0C;

16: inregs.h.al = 0x08;

17: int86(0x21, &inregs, &inregs);

18: }

Listing 8.11. LISTO0811. C. A program demonstrating the

previous two functions.

P RPOO~NOUDAWNLER

P O

/* Program:
* Author:
* Purpose:

*

*

list081l1l.c

Bradley L. Jones

Demonstrates the use of the kbwait() and
keyhit() functions.

*/

#include <stdio.h>

12:
13: int keyhit(void);
14: void kbwait(void);

15:

16: int main(void)

17: {

18: int ctr = 65;

19: char buffer[256];

20:

21: printf(*\n\nClearing the keyboard buffer.”);
22: printf(*“\nPress any key to continue...”);
23:

24: kbwait(Q);

25:

26: printf(*“\nMoving on...”);
27:

28: while(Tkeyhit())

29: {

30: printf(“%c”, ctr);

31:

32: if(ctr >= 90)

33: ctr = 65;

34: else

35: ctr++;

36: }

37:

38: printf(“DONE™);

39:

40: return O;

41: }

continue. Once you continue, the program begins printing the letters of

the alphabet. These letters are printed until akey is pressed. Using awhile
loop in line 28, allows the program to do what is contained in lines 29 to 36 until a
key is hit (keyhit () returns a key value). After each placement of a letter, the keyhit()
function is used to determine if a character has been pressed. If not, the program
continues to the next letter. If a character has been pressed, then the program prints
“Done” and ends. Because keyhit() returns the value of the key pressed, this program
could be changed to check for a specific key before ending.

Ana|y5| This program displays a message and then asks you to press any key to

Creating Your Own Interrupts

Not all of the interrupts have functions behind them. Because of this, you can create
your own interrupt events. This could be an event such as causing the speaker to beep,

255

e)
)
3%
=)

® DAY ®

8 Tapping into System Resources via BIOS
v

or a memory resident program. Unfortunately, writing your own interrupt functions
is beyond the scope of this book.

Compiler-Specific BIOS Functions

Many compilers come with several of their own functions that are already set up to
perform specific BIOS interrupt tasks. Microsoft comes with several. These include:

Microsoft _bios_equiplist
_bios_memsize
_bios_disk
_bios_serialcom
_bios_keybrd
_bios_printer

_bios_timeofday

Uses interrupt 0x11h (17) to perform an equipment
checklist.

Uses interrupt 0x12h (18) to provide information
about available memory.

Uses interrupt 0x13h (19) to issue service requests for
hard and floppy disks.

Uses interrupt 0x14h (20) to perform serial communi-
cations services.

Uses interrupt 0x16h (22) to provide access to key-
board services.

Uses interrupt 0x17h (23) to perform printer output
Services.

Uses interrupt 0x1Ah (26) to access the system clock.

Note: When using the Microsoft or the Borland predefined BIOS
functions, you need to include the BIOS.H header file.

The Borland compilers also have several preincluded BI1OS interrupt functions. These

include the following:
Borland biosequip
_bios_equiplist
biosmemory
_bios_memsize

biosdisk

_bios_disk

256

Uses interrupt 0x11h (17) to check equipment list.
Uses interrupt 0x11h (17) to check equipment list.
Uses interrupt 0x12h (18) to determine the size of
memory.

Uses interrupt 0x12h (18) to determine the size of
memory.

Uses interrupt 0x13h (19) to perform disk drive
Services.

Uses interrupt 0x13h (19) to perform disk drive
services.

bioscom Uses interrupt 0x14h (20) to perform serial communi-
cations services.

_bios_serialcom Uses interrupt 0x14h (20) to perform serial communi-
cation services.

bioskey Uses interrupt 0x16h (23) to work with the keyboard
interface.

_bios_keybrd Uses interrupt 0x16h (23) to work with the keyboard
interface.

biosprint Uses interrupt 0x17h (24) to perform printer services.

_bios_printer Uses interrupt 0x17h (24) to perform printer services.

biostime Uses interrupt O0x1Ah (26) to read or set the system
clock.

_bios_timeofday Uses interrupt Ox1Ah (26) to read or set the system
clock.

You may choose to use these functions, or you may decide to call the interrupts on your
own using a more generic intgs() type of function.

A Note on Compiler Functions
Versus BIOS Functions

Now that you’ve gotten a glimpse of the many functions that can be created using
BIOS and have reviewed some compiler-specific functions, it isimportant to consider
why you would ever need to create a new function using BIOS—or any of the other
methods presented. There are at least two major reasons for creating your own
functions. The first is for the sake of learning. By creating you own functions, you
better understand the underlying code. Once you create a function, you can putitinto
a library and use it everywhere. A second reason is flexibility. The compiler functions
are what they are. You cannot change them or modify them to your specific needs. By
writing your own functions, you can create them just the way you want them.

As this book continues, you will see several BIOS functions in action. In addition, you
will also see several more complex functions that have BIOS functions in their
underlying code.

Note: Remember, some compilers use int86¢) and Some use _int86().
You will need to check your compiler’s library reference manual to
determine which function is correct for you.

257

e)
)
3%
=)

258

® DAY ®

87

Tapping into System Resources via BIOS

Summary

Today, you were provided with the most powerful way of manipulating your
computer system’sresources. Thiswas through the use of interrupt calls to BIOS. The
acronym, BIOS, stands for Basic Input/Output System. You also were provided with
information on why BIOS functions are better to use than ANSI escape sequencesand
direct memory access. In addition, you were presented with tables containing
information on many of the system resources that BIOS can manipulate. This
includes placing the cursor, clearing the screen, changing colors, remapping keyboard
values, working with modems, reading joystick commands, and much, much more.
A few examples of using BIOS functions were presented to give an overall idea of what
using them requires. BIOS functions will be revisited off and on throughout the rest
of this book.

Q&A

Q Isthe BIOSREGS.H header file presented in Listing 8.1 necessary?

A You were shown the values presented by Microsoft and Borland compilers. If
you include DOS.H, you may not need to include the BIOSREGS.H
header file. Other compilers may or may not need the register structure.
Most of the programs from this point on won't include the BIOSREGS.H
header file. If your compiler doesn’t have the register union and structures,
you should include BIOSREGS.H.

Q Are the functions learned today portable to other computer systems?

A The functions covered in today’s material are portable to some computers.
The BIOS functions are portable to computers that are 100-percent compat-
ible with IBM BIOS. In addition, older versions of BIOS may not support
all of the functions. You should consult your DOS manuals and system
documentation to determine what interrupts your computer supports.

Q What is meant by BIOS functions being portable?

A The portability of BIOS functions is not necessarily the same as the portabil-
ity that will be discussed later in this book. The calls to BIOS functions are
not necessarily portable C code—each compiler may call interrupts slightly
differently. What is meant by portability is that an executable program
(.EXE or .COM) will have a better chance of running on many different
computer configurations than if you use ANSI functions or direct memory

writes. BIOS function calls are only portable to IBM-compatible machines;
however, they can have a multitude of different video monitors, modems,
printers, and so on.

Why might someone want to use direct video access instead of BIOS
functions?

If manipulating the video monitor at the highest speeds possible is impera-
tive to an application, then direct video memory access may be the best
solution. For graphics-intensive games, it’s often necessary to directly
manipulate the video memory to get the best results and the smoothest
graphical movements.

Are all the interrupts presented today always available?

No! Older versions of the DOS operating system may not support all of the

interrupts presented. If you are using an extremely old version of DOS, such
as 2.01, or even 3.0, then you may find that several of the functions are not

supported. Your DOS manuals may contain a list of supported interrupts.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned.

Qui

© N o g &

y4

. What does BIOS stand for?
. What are two reasons to use BIOS functions instead of ANSI functions?

What is a reason to use the BIOS function instead of direct memory access
when updating the video display?

What is an interrupt number?

What is an interrupt function?

What is an interrupt subfunction?

What does interrupt 0x33h function do?

What does function 2 of interrupt 51 (0x33h) do?

259

Tapping into System Resources via BIOS

9. What does interrupt 25 (0x19h) do?

10. Do all computers support all BIOS functions?

EXxercises

1. Create a library containing all of the BIOS functions presented today. Call
this library TYAC.LIB. This library can be used in future chapters. This
library should contain the following functions:

current_date()
cursor(Q)
get_cursor()
set_cursor_size()
keyhit()

kbwait()

Note: You should also create a header file with the same name as your
library. This header file should contain the function prototypes for the
functions in your library.

2. Create a function that enables you to scroll the screen up one line at a time.
This function can be created via a BIOS interrupt. You should set the
following registers:

ah = 0x07
al=1
ch=0
c1 =0
dh =25
di1 =col
bh=0

The BIOS interrupt is 0x10.

3. Rewrite the function from Exercise 2. This time write the function generi-
cally so that it can be used to scroll the screen—or a portion of the screen—
up or down:

260

ah should be set to interrupt 0x07 to scroll up or 0x06 to scroll down.
al should be set to the number of lines to scroll.

ch should be set to the number of the starting row on the screen area to be
scrolled (O is the first line on the screen).

cl should be set to the number of the starting column on the screen area to
be scrolled (O is the first column on the screen).

dh should be set to the width of the scrolling area. (This should be added to
the row to only scroll the intended area.)

di should be set to the height of the scrolling area. (This should be added to
the column to only scroll the intended area.)

bh should be used for an attribute. In this case, always set bh to 0.
. Write a program that uses the function from Exercise 3.

. Add the previous function to your TYAC.LIB library. You should also add
the prototype to the TYAC.H header file along with defined constants for
SCROLL_UP and SCROLL_DOWN.

. BUG BUSTER: What, if anything, is wrong with the following?

void current_date(int *month, int *day, int *year)
{

union REGS inregs, outregs;

inregs.-h.ah = 0x2a;

int86(0x21);
*month = outregs.h.dh;

*day
*year = outregs.X.CX;

outregs.h.dl;

261

