Text Graphics
(Using BIOS)

WEEK

264

Text Graphics (Using BIOS)

On Day 8, you were introduced to BIOS functions, which will be useful in the
programs you will develop. Day 8, however, barely scratched the surface of the
functions you’ll need when you create a full-scale application later in this book. Many
of the functions you’ll need relate to how you set up your screen and text graphics.
Today you will learn:

O What is meant by text graphics versus non-text graphics.
How to combine Day 8’s functions in a more organized manner.
How to enhance your cursor functions from Day 8.

How to create several useful screen and text functions to add to your library.

o o o o

How to add several new functions to your TYAC library.

Different Levels of Graphics

The level of graphics that can be used on a computer vary. Generally, graphics are
broken down according to their levels of complexity. The complexity of each level is
directly proportional to the portability of the system created using them. The different
levels include:

O Monochrome text
O Colored text
O Pixel graphics
O Character graphics

Monochrome text is the least graphical and the most portable. This uses the charac-
tersthatare in the ASCII chart with values from 0 to 127 or a similar set of characters.
Because color is not considered and no characters other than those in the table are
used, this monochrome text is sometimes not considered graphical.

Colored text is a little more graphical and less portable because not all systems sup-
port color. Colored text still uses the same character set as the monochrome text;
however, the text can be displayed in a variety of colors. Virtually all personal
computer systems today support colored text. Even some monochrome (single-
colored) monitors support colored text by using gray-scale. Monochrome monitors
that support gray-scale display colors in different shades or intensities of a single color.
Most monochrome notebook computers support gray-scales of 16, 64, or 256 colors.
You should understand, however, that there are some monochrome monitors that
only support a single color.

Pixel graphics use the individual pixels—or dots—within a computer monitor.
Because they work at a pixel level, any character can be displayed. The resolution, or
clarity, of a displayed character depends on the computer, number of pixels in the
computer’sscreen, and the number of colors that the screen can support. Thisincludes
CGA, EGA, VGA, Super VGA and more. Because the level of graphics that can be
done depends on the computer system, this is much less portable than the other
graphics methods. What is gained is the displayed graphics are not limited to the
ASCII character set. Instead, any picture or graphic can be displayed.

Note: Most computer systems today support pixel graphics at VGA level
resolutions (640" 480 pixels).

Note: If you run a program with a higher graphics resolution and a
monitor that supports only a lower graphics resolution, you can get
unpredictable results. For example, if a program that supports VGA-level
pixel graphics is run on a monitor that only supports colored text, the
outcome may be a blank screen. Worse, the output may be garbled colors
on the screen.

Character Graphics

Character graphics are similar to the color text. However, instead of being limited to
the ASCII characters 0 to 127, character graphicsalso include the characters from 128
to 255. These additional characters are referred to as the extended character set. This
extended character set provides many additional characters that can help give an
application a more graphical look and feel without losing the portability of going to
full pixel graphics. Appendix B shows the entire ASCI1 character set. Those characters
with the values from 128 to 255 are considered the extended ASCII character set.

By using many of the characters provided in the extended set, you can create lines,
boxes, grids, and more. In addition, character graphics include color. The number of
colors used is generally left at the same level as the lowest pixel graphics—CGA. Fig-
ure 9.1 shows some of the character graphics in use.

265

266

Text Graphics (Using BIOS)

Figure 9.1. Character graphics in use.

Note: Most DOS-based applications use character graphics. Packages that
use character graphics are WordPerfect 5.2 for DOS, Paradox for DOS,
DBASE 1V, and Lotus 123 for DOS. Most of these packages also allow
for some pixel graphics.

Organizing Your Functions

Starting on Day 12, this book will begin guiding you through the development of a
complete application. In developing this application, you’ll use several of the
functions that you have developed on earlier days. In addition, you’ll also use many
new functions. Most of the functions will be developed over the next few days. Today,
you’ll develop several functions, including a line function and a box function, that use
the character graphics.

Before learning new functions, you should ensure that your current functions are
organized. In one of the exercises on Day 8, you created a library containing your
functions and a header file. The header file should contain function prototypes for
your functions along with any additional information that may be needed by your
library’s functions. Listing 9.1 is an updated version of the TYAC.H header file that
you created on Day 8.

Type Listing 9.1. The enhanced TYAC.H header file.

1: /* Program: TYAC.H
2: * (Teach Yourself Advanced C)

Authors: Bradley L. Jones
Gregory L. Guntle

*
*
* Purpose: Header file for TYAC library functions
*

#ifndef _TYAC_H_
#define _TYAC H_

/* DOS and BIOS Interrupts */

#define BIOS_VIDEO
#define DOS_FUNCTION

0x10
0x21

/* BIOS function calls */

#define SET_VIDEO
#define SET_CURSOR_SIZE
#define SET_CURSOR_POS
#define GET_CURSOR_INFO
#define WRITE_CHAR
#define SET_COLOR
#define GET_VIDEO
#define WRITE_STRING

/* Types of Boxes */
#define DOUBLE_BOX
#define SINGLE_BOX
#define BLANK_BOX

/* Box fill flags */
#define BORDER_ONLY
#define FILL_BOX

/* Colors */

#define BLACK
#define BLUE
#define GREEN
#define CYAN
#define RED

#define MAGENTA
#define BROWN
#define WHITE
#define GRAY
#define LIGHTBLUE
#define LIGHTGREEN
#define LIGHTCYAN
#define LIGHTRED
#define LIGHTMAGENTA
#define YELLOW
#define BRIGHTWHITE

0x00
0x01
0x02
0x03
0x09
0x0B
OxOF
0x13

[EY

[

©Co~NOOUA~AWNEO

*/

continues

267

268

Text Graphics (Using BIOS)

Listing 9.1. continued

52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:

/* used to set scrolling direction */
#define SCROLL_UP 0x07
#define SCROLL_DOWN 0x06

/* Gets the current date */
void current_date(int *, int *, Iint *);

/* Positions the cursor to row/col */

void cursor(int, int);
/* Returns info about cursor */

void get_cursor(int *, int *, int *, Iint *, iInt *);
/* Sets the size of the cursor */

void set_cursor_size(int, int);

/* clear the keyboard buffer */
void kbclear(void);

/* determine keyboard hit */
int kbhit(void);

/* scroll the screen */
void scroll(int row, int col,
int width, int height,
int nbr, int direction);

#endif

Pl

As you can see, this header file contains a function prototype in lines 58 to 74
for each of the functions that should be in your library. By including this header
file in any of the programs you are using, you’ll be sure to have all the prototypes

that you need for the library functions. You’ll also be able to keep any other
information in this header file that is needed by your functions.

This version of the TYAC.H header file includes several other items. Lines 11 and 12
include defined constants for BIOS interrupt numbers. Lines 14 to 22 include defined
constants for BIOS function numbers. These defined constants will be used in many
of the functions created today. By using the defined constants instead of the actual
numbers, your individual functions will be more readable.

Lines 28 to 30 declare a few additional defined constants, which will be used in
creating a border on a box function later today. Lines 32 to 48 define the basic colors.
This is similar to the defined constants that were created for the ANSI functions on

Day 4. Afinal set of defined constantsare declared in lines 51 and 52. These were used
in the control break function presented in the Day 8 exercises.

The TYAC.H header file will by dynamic. As you create each of your new functions,
you should add the prototype into TYAC.H. By doing this and by adding each
function to your TYAC.LIB library, you'll ensure that you’ll have a complete library

to use.
Tip: You should give your library the same name as the header file—
\ TYAC. This will help you keep the two related together. (TYAC
4 stands for Teach Yourself Advanced C.)

Note: The TYAC.LIB library and TYAC.H header file will be used from
this point on. Each function you create on the following days should be
added to your library. In addition, you should add the new function
prototypes to TYAC.H.

Enhancing Your Cursor
Functions

The cursor functions on Day 8 contained only the basic row and column parameters.
The BIOS calls that work with the cursor will provide much more information than
just the row and column of the cursor. While you may not always need the additional
information, it’s better to go ahead and make your functions a little more functional.
Theget_cursor() and cursor () functions presented originally in Listings8.3and 8.4
should be enhanced. Listings 9.2 and 9.3 contain new cursor functions.

T @ Listing 9.2. PCURSOR.C. A function to put the
I—yp—l cursor on screen.

1: /* Program: PCURSOR.C
2: * Authors: Bradley L. Jones

continues

269

270

Text Graphics (Using BIOS)

Listing 9.2. continued

Gregory L. Guntle

Purpose: Demonstrates a BIOS function to position the
cursor on the screen.

Note: This function places the cursor at a given
location on the screen. The upper left position
of the screen is considered (0,0) not (1,1)

Fox X % ok ok %

*/

#include <dos.h>
#include “tyac.h”

void cursor(int row, int column)

{
union REGS inregs;
inregs.h.ah = SET_CURSOR_POS;
inregs.h.bh = 0;
inregs.-h.dh = row;
inregs.h.dl = column;
int86(BI0S_VIDEO, &inregs, &inregs);
}

Tyee

Listing 9.3. GCURSOR.C. A function to get cursor
from screen.

©CoO~NOULhA WNPEP

14:
15:
16:
17:
18:
19:
20:

/* Program: GCURSOR.C

* Authors: Bradley L. Jones
* Gregory L. Guntle
* Purpose: Demonstrates a BIOS function to get the position
* of the cursor on the screen.

* Note: This function considers the upper left position
* of the screen to be (0,0) not (1,1)

*

*/

#include <dos.h>
#include “tyac.h”

void get_cursor(int *row, int *column, int *page, int *start,
int *end)
{

union REGS inregs, outregs;

inregs.h.ah = GET_CURSOR_INFO;

inregs.h.bh = 0;
int86(BI0S_VIDEO, &inregs, &outregs);
*row = (int) outregs.h.dh;

21: *column = (int) outregs.h.dl;
22: *page = (int) outregs.h.bh;
23: *start = (int) outregs.h.ch;
24: *end = (int) outregs.h.cl;
25: %}

Ana|y5|§ The PCURSOR.C listing operates exactly as it did before. Only minor cosmetic

changes have been made. Notice thatin line 12, the TYAC.H header file is now
being included. This enables you to use any of the defined constants in this function.
In addition, it ensures that the function’s prototype is included. In lines 18 and 22,
two defined constants are used from the TYAC.H header file: GET_cursor_INFo and
B10s_VIDEO. This makes the cursor() function’s code a little easier to read.

The GCURSOR function in Listing 9.3 is different from the function presented on
Day 8. Like the cursor() function in Listing 9.2, the TYAC.H header file has been
included, and the defined constants have been used. In line 13, you’ll notice a much
larger change. The get_cursor() function now has three additional parameters, page,
start, and end. These three parameters give the function the capability to pass
additional information back to the calling program. Now whenyou use get_cursor(),
you won't only get the row and column location of the cursor, but you'll also get the
video page that the cursor is on and the start and end scan lines that make up the
cursor’s shape. (See the set_cursor_size() in Day 8 for information on the cursor.)
This additional information makes the function much more useful.

’ Warning: When you change a function, you need to recompile it and

update your library. If you change the parameters passed to a function,
you need to change the prototype within the header file also. In addition,
if you change a header file, you may need to recompile all the programs
that use the header file to ensure that you don’t cause problems in your
other functions.

N Note: An explanation of a video page will be covered later today.

You might be wondering why Day 8 did not present the get_cursor() functions with
the additional parameters. You'll generally write a function to serve a specific need.

271

Text Graphics (Using BIOS)

As time goes on, you'll find that you need to update or enhance the function. The
cursor functions are a prime example of such changes. You should update your library
and header file with these newer versions.

Do | DON"T]|

DO continue to add your functions to (or update) your TYAC.LIB library.

DON'T forget to update your library and header file when you change a
function.

DO use defined constants to make your programs and functions easier to
read—and debug.

Creating New Functions

In the following sections, several new functions will be presented that will help you
create applications. You'll learn a few functions that help in your use of text graphics
and a function that enables you to pause until a key is entered.

Text Graphics Functions

Several text graphics functions will be presented. Many of these functions can be used
with the functions you have created on previous days. These include the following:

O Setting the video mode.

Getting the video mode.

Setting the border color.

Writing a character.

Writing a character multiple times.

Drawing a line.

o o o o o g

Drawing a box.
0 Drawing a box with borders.

You'll want to add several of these functions to your TYAC library.

272

Working with the Video Mode

When you begin to work with character graphicsand character graphic functions, you
must have a little background information. Most computer monitors display 25 rows,
each with 80 characters; however, you should never assume this. Two functions will
be extremely useful when using character graphics. These are a function to set the
video mode and to get the video mode (Listings 9.4 and 9.5).

ﬂpe Listing 9.4. GVIDEO.C gets the video mode.

1: /* Program: GVIDEO.C

2: * Authors: Bradley L. Jones

3: * Gregory L. Guntle

4: * Purpose: Demonstrates a BIOS function which gets the
5: * current video mode.

6: *

7: *

8: * Display modes (partial list):

9: *

10: * 0 40 by 25 black and white text
11: * 1 40 by 25 16-color text

12: * 2 80 by 25 black and white text
13: * 3 80 by 25 16-color

14: *

15: * 4 320 by 200 4-color

16: * 5 320 by 200 4-color

17: * 6 640 by 200 2 color

18: *

19: * 7 80 column mono text

20: *

21: * 64 80 by 43 (EGA)

22: * 80 by 50 (VGA)

23: * */
24:

25: #include <dos.h>

26: #include “tyac.h”

27:

28: void get_video(int *columns, int *display_mode, int *display_page)
29: {

30: union REGS inregs, outregs;

31:

32: inregs.h.ah = GET_VIDEO;

33: int86(BI0S_VIDEO, &inregs, &outregs);
34: *columns = (int) outregs.h.ah;

35: *display_mode = (int) outregs.h.al;
36: *display_page = (int) outregs.h.bh;
37: %}

273

274

Text Graphics (Using BIOS)

three different variables that have pointers passed on to the get video()

function. The first parameter, cotumn, will be filled in with the number of
columns available. The second parameter, display_mode, Will be filled in with a
numeric value. The value will signal which mode the video is set to. The comments
in lines 8 to 22 detail the different values that the video mode could be. The third
parameter, display_page, Will be filled with the display page number. There can be
more than one video page; however, only one can be active at a time. Video pages are
areas reserved to set up screen information; however, they are not visible until they are
made active. Most programs ignore video paging and simply use the current page. As
shown earlier, one of the additional parameters for the cursor functions was for the
video page number.

Ana|y5| This program gets information on the video mode. This will fill in the values of

Lines 30 to 36 contain the bulk of this program. As you can see, the get_video()
function looks like many of the other BIOS functions. There has been one subtle
change. Instead of using an interrupt and a function number, defined constants are
used. The ceT_vipeo and B1os_vipeo constants should make this function easier to
understand.

The ability to get the video mode is important; however, sometimes you’ll want to set
it. The set_video() function does just that.

ﬂpe Listing 9.5. SVIDEO.C sets the video mode.

1: /* Program: SVIDEO.C

2: * Authors: Bradley L. Jones

3: * Gregory L. Guntle

4: * Purpose: Demonstrates a BIOS function to set the video
5: * mode.

6: * *
7: *

8: * Display modes (partial list):

9: *

10: * 0 40 by 25 black and white text
11: * 1 40 by 25 16-color text

12: * 2 80 by 25 black and white text
13: * 3 80 by 25 16-color

14: *

15: * 4 320 by 200 4-color

16: * 5 320 by 200 4-color

17: * 6 640 by 200 2 color

18: *

19: * 7 80 column mono text

20: *

21: * 64 80 by 43 (EGA)

* 80 by 50 (VGA)
*. */

#include <dos.h>
#include *““tyac.h”

void set_video(int display_mode)

{
union REGS inregs;
inregs.h.ah = SET_VIDEO;
inregs.h.al = display_mode;
int86(BIOS_VIDEO, &inregs, &inregs);
3

22
23
24
25
26
27
28
29
30
31
32
33
34
35
Arelsi

The set_video() function accepts a numeric parameter for the mode. These are
the same numbers that are returned by the get_video() function. You should
notice that this function attempts to set the mode even if an invalid mode is

passed. By not editing the display mode that is to be set, this function will be capable
of setting additional modes that may be supported in the future. You may want to
consider adding logic to prevent any invalid display modes from being set. In an
exercise at the end of the day, you’ll be asked to use these functions to write a program.

Setting the Border Color

Once you are able to work with the video mode, you are ready to forge into text
graphics and color functions. Most of the functions work on the screen; however,
there is also a border to the screen that can be colored. Listing 9.6 contains a function
to set the border color.

Type Listing 9.6. SBRDCLR.C sets the border color.
1: /* Program: SBRDCLR.C
2: * Authors: Bradley L. Jones
3: * Gregory L. Guntle
4: * Purpose: Sets the border color.
5: * */
6:
7: #include <dos.h>
8: #include “tyac.h”
9:
10: void set_border_color(int color)
11: {
12: union REGS inregs;
13:

continues

275

276

Text Graphics (Using BIOS)

Listing 9.6. continued

14:
15:

inregs.h.ah
inregs.h.bh

SET_COLOR; /* Set Color Palette */
0; /* BL contains background and border
color */

inregs.-h_.bl = color; /* New color */
int86(BI0S_VIDEO, &inregs, &inregs);

16
17
18
Anal C This listing contains the set_border_color() function, which sets the color of
W the border to the value passed in color. This color should be one of the values

contained in TYAC.H that isincluded in line 8. As you can determine from this
listing, the border color is set using the Biros_vipeo interrupt (0" 10) and the
seT_coLor function (0” 0B). Inaddition, the bh register needs to be set to 0. The actual
color number is set in line 16 to the b1 register.

1

Warning: The set_border_color() function in Listing 9.5 does not
.’ contain any error trapping. You may wish to add edit checks limiting the

® acceptable values to this function. You should consider adding error
trapping to all the functions that are presented.

Writing a Character in Color

While setting the border’s color is fun, it’s often not done. What is often done is
writing a character to the screen. Although the ANSI putchar() function does a
splendid job of putting a character on the screen, it doesn’t do it in color. Listing 9.7
presents a new function for writing a character in color.

2

P4

Listing 9.7. WRITECH.C. A function to write a
character in color.

/*

*
*
*
*
*

©C®NOUIAWNPR c%;

Program:
Authors:

Purpose:

WRITECH.C

Bradley L. Jones

Gregory L. Guntle

Writes a character at a the current cursor
location.

*/

#include <dos.h>
#include *““tyac.h”

10:

11: void write_char(char ch, int fcolor, int bcolor)

12: {

13: union REGS inregs;

14:

15: inregs.h.ah = WRITE_CHAR;

16: inregs.h.al = ch; /* Character to write */
17: inregs.h.bh = 0; /* Display page goes here */
18: inregs.-h.bl = (bcolor << 4) | fcolor;

19: inregs.x.cx = 1;

20: int86(BI0S_VIDEO, &inregs, &inregs);

21: %}

m This func_tion_ writes a chara_cter at_the Cl_Jrsor’_s current location. For _this reason,
)’5 the function is good to use in conjunction with the cursor() function learned

earlier. As you can see by line 11, the function takes three parameters. The first,
ch, is the character to be printed. The second two are the foreground color, fcolor,
and the background color, bcolor. These are used in line 18 to set the color of the
character to be printed.

This setting of the color might seem confusing, but it works. Because the numbers for
the colors are small, they don’t require an entire byte for each of the background and
foreground colors. Instead, the background color is placed in the high order bits of an
individual character (the top half). The foreground colors are stored in the lower bits
(or the bottom half). Toaccomplish this, the background color, beolor, is shifted four
positions and then “OR”ed into the same register as the foreground color. This isn't
an uncommon practice for setting a foreground/background color combination into
a single field.

A few other registers are also set in this function. The first is the an register, which is
set to function wriTE_cHAR (0" 09 defined in your TYAC.H header file). The x.cx
register is set to 1, the oh register to 0, and the al register to ch, which is the character
that is going to be printed. (The cx register will be covered in the next section.) The
bh register is set to the video page number. We are assuming zero here; however, if you
decide to work with video paging, this function can be modified to assign the video
page to the bh register. In line 20, writing the character is accomplished by passing
these register values with an interrupt 0° 10—the defined value of B1os_vipeo in your
TYAC.H file.

277

278

Text Graphics (Using BIOS)

Note: The TYAC.H header file presented in Listing 9.1 contained the
colors that are available. The foreground colors can be any one of the 16
colors presented. The background colors are only the first eight.

Repeating a Character

Often you’ll want to print a character several times. For example, to draw a line of
asterisks, you could call the write_char() several timesinarow. Or alternatively, you
could create a function to do this for you. Listing 9.8 shows a function that you may
think accomplishes the task of printing a character a given number of times.

ﬂpe Listing 9.8. Using a for loop to repeat a character.
1: /* Program: LIST0907.C
2: * Authors: Bradley L. Jones
3: * Gregory L. Guntle
4: * Purpose: Writes a character several times.
5: * */
6:
7: #include “tyac.h”
8:
9: void repeat_char(char ch, int howmany, int fcolor, int bcolor)
10: {
11: int ctr;
12:
13: for(ctr = 0; ctr < howmany; ctr++)
14: {
15: write_char(ch, fcolor, bcolor);
16: }
17: %}

Asyou can see, thisisastraightforward function. Itsimply callsthewrite_char()
function the number of times requested. This function doesn’t work the way you
might expect. It writes the character the number of times stated in howmany;

however, it will write them on top of each other! The write_char() function has no
control of the cursor. You have to move the cursor yourself. Each time you write a
character, you need to move the cursor over one column. In addition, you have to
determine where the cursor originally was to know the values to increment.

While you could get a function like this to work, there is an easier—and better—
alternative. Listing 9.9 presents a function that looks virtually identical to the
write_char() function presented in Listing 9.8; however, there are a few subtle
differences.

\<I
=
D

Listing 9.9. REPEATCH.C. A better repeating
character function.

1: /* Program: REPEATCH.C

2: * Authors: Bradley L. Jones

3: * Gregory L. Guntle

4: * Purpose: Repeats a character starting at a the current

5: * cursor location.

6: * */

7:

8: #include <dos.h>

9: #include *“‘tyac.h”

10:

11: void repeat_char(char ch, int howmany, int fcolor, int bcolor)
12: {

13: union REGS inregs;

14:

15: inregs.h.ah = WRITE_CHAR;

16: inregs.-h.al = ch; /* Character to write */

17: inregs.h.bh = 0; /* Display page goes here */
18: inregs.h.bl = (bcolor << 4) | fcolor;

19: inregs.x.cx = howmany; /* Nbr of times to display */
20: int86(BI0S_VIDEO, &inregs, &inregs);

21: %}

m The first difference you’'ll notice is that the function is called repeat_char()
W instead of write_char(). In line 11, you can see that an additional parameter is

passed to the function. This parameter, howmany, specifies the number of times
the character is to be repeated. In line 19, the value in howmany is assigned to the x.cx
register. For the write_char() function, the number 1 was assigned to the cx register.
This is because when you write a character, you are only repeating the character one
time.

With these minor differences, the repeat_char() function is complete. You may be
wondering why the write_char(function isn’t eliminated and the repeat_char()
function always used. If you call repeat_char() and pass the value of 1 in the howmany
field, then you are essentially accomplishing the write_char() function. The basic
reasons for having separate functions are readability and usability. When you write a
character in color, generally you don’t think of repeating it.

279

280

Text Graphics (Using BIOS)

Drawing a Line

You already know how to draw a line with character graphics even though you may
not be aware of it. A line is simply a set of repeated line characters. There are several
line characters in the extended ASCII character set. These include characters 179 and
186 for drawing vertical lines and characters, and 196 and 204 for drawing horizontal
lines. Listing 9.10 demonstrates the use of the repeat_char() function to print not
only aline of asterisks, but also text lines using some of the extended ASCII characters.

Note: When you compile this program, you should link in your TYAC
library. You should add each new function you learn to your TYAC
library. Many of the remaining programs (listings that create executable
files) assume that you are linking the TYAC library. In addition, they
assume that you have updated it with any new functions.

Listing 9.10. Using the repeat_char() function and
drawing lines.

“<:
e
D

1: /* Program: LIST0909.C

2: * Authors: Bradley L. Jones

3: * Gregory L. Guntle

4: * Purpose: Use the repeat_char() function.

5: * */
6:

7: #include <stdio.h>

8: #include “tyac.h”

9:

10: void pause(char *message);

11:

12: int main(void)

13: {

14: int fcolor, bcolor;

15:

16: for(bcolor = 0; bcolor < 8; bcolor++)
17:

18: for(fcolor = 0; fcolor < 16; fcolor++)
19: {

20: cursor(fcolor+2 , 0);

21: repeat_char(205, 70, fcolor, bcolor);
22: 3}

23: pause(“Press enter to continue...”);

24: }

25: return O;

26: }

27:

28: void pause(char *message)

29: {

30: printf(*\n%s”, message);

31: while ((getchar()) !'= “\n”) { }
32: fflush(stdin);

33: }

N Note: The output will be in color; however, it isn’t shown here.

9.10 does a little more than print a bunch of double lines. As usual, line 8

includes the TYAC.H header file. The TYAC.H header file should contain all
the function prototypes for the new functions that you are creating. In addition, the
TYAC.LIB file should contain all the functions. If you get a link error for cursor(,
it could be that you didn’t add this function to your library on Day 8.

Analys| This program is fun because you are working with color. As you can see, Listing

This program does a lot for the small amount of code presented. It presents the
available color combinations by using two for loops to cycle through the foreground
and background colors. In addition, double lines are drawn across the screen. Line 21
draws the double lines by repeating character 205, which is a double line. If you
wanted single lines instead, you could have used character 196. For fun, try using
character 179. This presents vertical, multicolored lines.

The pause) function is used in line 23 to provide a momentary break between each
background color. Each time you press the enter key, the screen is redrawn with the
next background color. The code for the pause function is in lines 28 to 33. It will be
covered at the end of today.

281

Text Graphics (Using BIOS)

Writing a String in Color

Writing a string in color can be accomplished in several different ways. The simplest
way is to break it down into individual characters and print each one. There is an
alternate way that won't be shown in this book. It involves using an extended set of
registers that aren’t always available. Using the write_char() function makes writing
a string in color much easier. Listing 9.11 presents the write_string() function.

\zﬂ
g
D

Listing 9.11. WRITESTR.C writing a string in color.

7
1: /* Program: WRITESTR.C
2: * Authors: Bradley L. Jones
3: * Gregory L. Guntle
4: * Purpose: Write string to the screen
5: * Uses write_char
6: * */
7:
8: #include <string.h> /* for strlen() */
9: #include “tyac.h”
10:
11: void write_string(char *string, int fcolor, int bcolor, int row,
int col)
12: {
13: int len = strlen(string);
14: int i;
15:
16: for (i=0; i < len; i++)
17: {
18: cursor(row, col+i); /* Position cursor */
19: write_char((char)*(string+i), fcolor, bcolor);
20: }
21: %}

m This isn’t a perfect listing, but it is effective. As you can see, a for loop in lines
)’5 16 to 20 enables you to loop through each character of the string. For each
iteration of the string, the cursor is placed and a character is written. Thisis done

in line 19 with the write_char() function. The character passed is:

(char)*(string+i)
Don't let this confuse you. This is just the character at the i offset in string.

The write_string() function is a powerful function. It can write a string at any
position on the screen. Inaddition, write_string() canwriteitin color. You may find
this to be one of your most useful functions. Where write_string() has its flaw is in
escape characters. In printf(), certain sequences of characters perform special
functions. An exercise at the end of today asks you to update write_string() S0 some

282

of the escape sequences are implemented. You should do this exercise. If you don't,
you should at least update your write_string() function with the answer provided
for the exercise.

Drawing a Box

Setting the cursor, writing characters, and manipulating color give you a lot of power
in manipulating the screen. These three capabilities are what have enabled you to draw
lines and write colored text. These functions also work together to help you create a
box and, on later days, an entire entry screen for an application.

A box is a simple construct that can have several uses when working with output to
the screen. A box can be used to create menus, screens, messages, and more. Boxes
begin to get more complex when you choose to add borders to them. In addition, there
can be an additional level of complexity added when you choose to have filled or
unfilled boxes. Figure 9.2 presents different styles of boxes.

Figure 9.2. A few examples of boxes.

Listing 9.12 presents a function that enables you to create all of the boxes in Figure
9.2 using text graphics. Several of the added defined constants in the TYAC.H header
file presented in Listing 9.1 were made specifically for the box() function. You should
verify that these defined constants are in your TYAC.H header file. You should also
add the function prototype for the box function. The defined constants that were
added specifically for the box function are:

25: /* Types of Boxes */

26: #define DOUBLE_BOX 1
27: #define SINGLE_BOX 2
28: #define BLANK_BOX 3
29:

283

Text Graphics (Using BIOS)

30: /* Box fill flags */
31: #define BORDER_ONLY 0
32: #define FILL_BOX 1

You'll see these constants used within the box() function’s listing. In addition, you
may choose to use them when you use the box() function in your programs. Listing
9.13 is a small listing that uses the box() function along with several of the defined
constants.

ﬂpe Listing 9.12. BOX.C. The box() function.

1: [

2: * Program: BOX.C

3: * Authors: Bradley L. Jones

4: * Gregory L. Guntle

5: * Purpose: Draws a box on the screen using other BIOS

6: * functions.

7: *

8: * Enter with: start_row (0-24)

9: * end_row (0-24)

10: * start_col (0-79)

11: * end_col (0-79)

12: * */

13:

14: #include “tyac.h”

15:

16: void box(int start_row, int end_row,

17: int start_col, int end_col,

18: int box_type, int fill_flag,

19: int fcolor, int bcolor)

20: {

21: int row;

22:

23: /* BOX CHARACTERS */

24: static unsigned char DBL_BOX[6] = “.™0,0” ; /* Double-sided box
characters */

25: static unsigned char SGL_BOX[6] = 3/7Mly" ; /* Single-sided box
characters */

26: static unsigned char BLK_BOX[6] = “ “ ; /* Spaces for
erasing a box */

27: static unsigned char *USE_BOX; /* Set this vari
able to the
appropriate box
characters to
use */

28:

29: /* Determine BOX Type to Draw */

30: switch (box_type)

31: {

32: case DOUBLE_BOX: USE_BOX = DBL_BOX;

33: break;

284

34: case SINGLE_BOX: USE_BOX = SGL_BOX;

35: break;

36: case BLANK_BOX: USE_BOX = BLK_BOX;

37: break;

38: default: USE_BOX = DBL_BOX;

39: break;

40: }

41:

42: /* Draw the top two corner characters */

43: cursor(start_row, start_col);

44: write_char(USE_BOX[0], fcolor,bcolor);

45: cursor(start_row, end_col);

46: write_char(USE_BOX[2], fcolor,bcolor);

47:

48: /* Draw the top line */

49: cursor(start_row, start_col+1);

50: repeat_char(USE_BOX[1],end_col-start_col-1,fcolor,bcolor);

51:

52: /* Draw the bottom line */

53: cursor(end_row,start_col+1);

54: repeat_char(USE_BOX[1],end_col-start_col-1,fcolor,bcolor);

55:

56: /* Draw the sides */

57: for (row=start_row+l; row < end_row; row++)

58: {

59: cursor(row,start_col);

60: write_char(USE_BOX[3],fcolor,bcolor);

61: cursor(row,end_col);

62: write_char(USE_BOX[3],fcolor,bcolor);

63: }

64:

65: /* Draw the bottom corner pieces */

66: cursor(end_row, start_col);

67: write_char(USE_BOX[4],fcolor,bcolor);

68: cursor(end_row,end_col);

69: write_char(USE_BOX[5],fcolor,bcolor);

70:

71: /* fill box */

72:

73: if(Fill_flag '= BORDER_ONLY)

74: {

75: for(row= start_row+1l; row < end_row; row++)

76: {

77: cursor(row, start_col+1);

78: repeat_char(“ “, ((end_col-start_col)-1), fcolor,
bcolor);

79: 3}

80: }

81: } /* end of BOX */

285

286

Text Graphics (Using BIOS)

’7 Listing 9.13. DRAWBOX.C. Using the box() function
ﬂpe to draw boxes.

1: /* Program: DRAWBOX.C

2: * Authors: Bradley L. Jones

3: * Gregory L. Guntle

4: * Purpose: Draws boxes on the screen using BIOS
5: * */
6:

7: #include “tyac.h”

8:

9: int main()

10: {

11: int start_row = 5;

12: int start_col = 20;

13: int end_row = 13;

14: int end_col = 60;

15:

16: box(start_row, end_row, start col, end_col,
17: SINGLE_BOX, FILL_BOX, RED, CYAN);

18:

19: box(18, 23, 1, 10, DOUBLE_BOX, BORDER_ONLY, YELLOW, BLUE);
20:

21: return O;

22: %}

Anal)/S!S This output is from Listing 9.12. As you can see, two different boxes are created

on the screen. In addition, these boxes are in color. The first box is a filled cyan

box with ared border. The red border isasingle solid line. The second box is not
filled and has a yellow border on a blue background. In looking at Listing 9.13, this
follows the two calls to box() in lines 16 and 19.

As you can see, the box() function takes eight parameters. While this may seem like
alot, by having eight parameters, the box() function becomes very useful. Listing 9.13

contains the box function itself. Line 16 starts the function. Here you can see the eight
parameters that are received. The first two parameters are the starting row and the
ending row for the box. The third and fourth parameters are the starting and ending
columns. By setting these four parameters, you define the size of the box. The four
variables, start_row, end_row, start_col, and end_col Will be used throughout the
box() function.

The next parameter, box_type, determines the type of border on the box. One of three
possible borders are available in the box, bouBLE_BOX, SINGLE_BOX, O BLANK_BOX.
These are defined constants that are in the TYAC.H header file. Their corresponding
values, two, one, or zero, could also be used. This parameter is used in line 30 to
determine which borders are going to be used in the box.

Thefifth parameter, fi11_fiag, also uses defined constants from the TYAC.H header
file. Firn_f1ag can be set to BORDER ONLY Or FILL_BOX. This variable determines
whether the inside of the box will be filled. If the fi11_f1ag contains BORDER_ONLY, the
box won't be filled.

The last two parameters, fcolor and beolor, are the colors. These are used to set the
foreground and background colors of the individual box characters.

This listing needs more explanation than those previously presented. Line 16 contains
the function parameters, which have already been discussed. Lines 24 to 26 contain
character arrays that contain the characters used to create the border on the box. Line
27 contains a character pointer, use_Box, that is set to point at one of these three sets
of border types. Lines 30 to 40 use the box_type parameter to set the appropriate array
to the use_sox pointer. Notice that if an inappropriate value is received in box_type,
then the default sets bsL_sox, the double-lined border.

Theboxisdrawn in lines 42 to 69. Line 43 places the cursor at the location of the top-
left corner of the box. The write_char() function is then used to write the top-left
corner character from the array that use_sox points to. The top-right character is
drawn in lines 45 and 46, the bottom two corners are drawn in lines 65 to 69. The
corners are connected with the edge lines in lines 52 to 63. The repeat_char()
function is used to draw the horizontal lines. A for loop in lines 57 to 63 is used to
draw the vertical lines. In each case, the appropriate character is used from the array
being pointed at by use_Box.

Lines 73 to 80 fill the box by printing spaces inside the box border. The spaces
effectively place the background color in the box. Only the inside of the box is filled
because the border has already been drawn.

287

288

Text Graphics (Using BIOS)

‘<:
g
D

This function makes the assumption that the row and column values passed in are
correct. If you pass a start_row that is greater than an end_row, Or a start_col that
is greater than an end_col, then you won’t get a box, but the function will still work.
Another flaw that can cause problems is a result of the row and column values. There
is no check to ensure that the values are appropriate for the screen. If you pass 1000
for a row value, you'll get unpredictable results. Both of these problems could be
avoided with coding additions; however, the coding additions can cause limitations
in the function. As long as you are aware of the possible problems, they can be avoided
easily.

Note: Writing foolproof code can be costly in the amount of time
required to handle every situation. It’s best to handle the problems that
are most likely to occur or that will cause serious problems. The amount
of time needed to add the code must be weighed against the value added
by the code.

A Pausing Function

One last function is going to be presented asan added bonus. This function isn’t really
atext graphics function; however, it’s one that you may find useful. Thisis the pause()
function. It was used in Listing 9.13. It enables you to stop what is being displayed
and wait for the user to press the enter key. This is a good addition to your TYAC
library.

Listing 9.14. PAUSE.C. A pausing function.

1: /* Program: PAUSE.C

2: * Authors: Bradley L. Jones

3: * Gregory L. Guntle

4: * Purpose: Causes the program to PAUSE until the ENTER
5: * key is pressed.

6: * Note: This program requires the calling routine
7: * to pass a message to display.

8: * */
9: #include <stdio.h>

10:

11: void pause(char *message)

12:

13: printf(“\n%s”, message);

14: while ((getchar(Q)) !'= “\n”) { }
15: Ffflush(stdin);
16: }

Anal *1 This short function receives a message that is displayed using the printfQ)
}’5| function. Itthen uses getchar () to get characters until it reads a new line (enter).
Once it reads an enter key, it flushes the keyboard and returns.

Updating Your TYAC Library
and Header File

At this point you should ensure that your TYAC.H header file and your TYAC.LIB
are both up-to-date. Exercise 1 asks you to update your library with all of today’s
functions. In addition, you should verify that your TYAC.H header file is similar to

Listing 9.15.
ﬂpe Listing 9.15. LISTO914.H. A new version of TYAC.H.
1: /* Program: TYAC.H
2: * (Teach Yourself Advanced C)
3: * Authors: Bradley L. Jones
4: * Gregory L. Guntle
5: * Purpose: Header file for TYAC library functions
6: * */
7:
8: #ifndef _TYAC_H_
9: #define _TYAC H_
10:
11: /* DOS and BIOS Interrupts */
12: #define BIOS_VIDEO 0x10
13: #define DOS_FUNCTION 0x21
14:
15: /* BIOS function calls */
16: #define SET_VIDEO 0x00
17: #define SET_CURSOR_SIZE 0x01
18: #define SET_CURSOR_POS 0x02
19: #define GET_CURSOR_INFO 0x03
20: #define WRITE_CHAR 0x09
21: #define SET_COLOR 0x0B
22: #define GET_VIDEO OxOF
23: #define WRITE_STRING 0x13
24:
25: /* Types of Boxes */

continues

289

Text Graphics (Using BIOS)

Listing 9.15. continued

26: #define DOUBLE_BOX 1

27: #define SINGLE_BOX 2

28: #define BLANK BOX 3

29:

30: /* Box Fill flags */

31: #define BORDER_ONLY 0

32: #define FILL_BOX 1

33:

34: /* Colors */

35: #define BLACK 0

36: #define BLUE 1

37: #define GREEN 2

38: #define CYAN 3

39: #define RED 4

40: #define MAGENTA 5

41: #define BROWN 6

42: #define WHITE 7

43: #define GRAY 8

44: #define LIGHTBLUE 9

45: #define LIGHTGREEN 10
46: #define LIGHTCYAN 11
47: #define LIGHTRED 12
48: #define LIGHTMAGENTA 13
49: #define YELLOW 14
50: #define BRIGHTWHITE 15

51:

52: /* used to set scrolling direction */
53: #define SCROLL_UP 0x07

54: #define SCROLL_DOWN Ox06

55:

56: /*————mm *

57: Function Prototypes

58: e */

59:

60: /* Gets the current date */

61: void current_date(int *, int *, int *);
62:

63: /* Positions the cursor to row/col */
64: void cursor(int, int);

65: /* Returns info about cursor */

66: void get_cursor(int *, int *, Int *, Int *, int *);
67: /* Sets the size of the cursor */

68: void set_cursor_size(int, int);

69:

70: /* clear the keyboard buffer */

71: void kbclear(void);

72: /* determine keyboard hit */

73: int kbhit(void);

74:

290

75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:

void

void
void
void
void
void

/* sroll the screen */
scroll(int row, int col,
int width, int height,
int nbr, int direction);

/* pause until ENTER pressed */
pause(char *);

/* Video mode functions */
set_video(int);

d get_video(int *, Int *, int *);

/* Text Graphics functions */
write_char(char, int, int);
repeat_char(char, int, int, int);
write_string(char *, int, int, int, int);
box(int, int, int, int, int, int, int, int);
set_border_color(int);

#endif

DO enter all of today’s functions and add them to your library.

DON’T |

Summary

Today, you covered a multitude of additional functions that work with text graphics.
Before jumping into these functions, you were given an overview of the different types
of screen graphics. You also moved right into creating new functions. The day focused
on functions that put text graphics on the screen; this included colored characters,
repeating a character, drawing text lines, and creating boxes. With the functions
presented in today’s material, you have the beginning building blocks for creating an
application’s screens.

DON'T over code your functions. If you spend an excessive amount of time
coding edits to prevent problems, you may never be able to use the function.

DO code enough edits into your functions to avoid as many problems as is
reasonable.

291

=)

292

®] Text Graphics (Using BIOS)

v

Q&A

Q What is the benefit of using text graphics instead of pixel graphics?

A Text graphics are much more portable and can be displayed on monitors of
varying resolutions, including some monochrome monitors. In addition, text
graphics are much easier to work with because you are working with a
limited number of characters.

Q Can you write text graphics programs that will be portable to C++ or
Windows?

A This is really two different questions. Windows programs use pixel graphics.
Windows can run text graphics programs in DOS windows. In regard to
portability to C++, all C constructs are portable to C++. This means that
you can write text graphics characters in C++ also.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned.

Q

El

What is meant by monochrome?

What are text graphics?

How many characters are in the ASCII character set?
What are considered to be the extended ASCII characters?
When you change a library function, what must you do?
When you change a header file, what should you do?

What is a reason for using defined constant?

© N~ o o &~ w N e O

What are the colors that can be used?

Exercises
1. Add all of the functions that you have created today to your TYAC.LIB

library. These functions should be:

cursor() (updated)
get_cursor() (updated)
get_video()
set_video()
set_border_color()
write_charQ)
repeat_char()
write_string()

box()

pause()

. Write a program that uses the get_video() functions. Once the program
gets the mode, it should display the values that are set.

. Modify the program from Exercise 2 to also set the video mode to 40
columns.

. Change the character in Listing 9.9 to character 177. What does this
character do?

. ON YOUR OWN: Use the functions presented today to write a program
that displays information on the screen in color. Use your imagination to
determine what you should display.

293

