
295

10

WEEK

22

1010
The getline()
Function

296

The getline() Function
DAYDAY

10

Up to this point you have learned about a multitude of functions, most of which have
been relatively small in size. Today you’ll concentrate on a single function to add to
your library: the getline() function. In the process, you’ll gain the use of a few more
functions. Today you will:

■ See what is needed to get formatted data from the display screen.

■ Become familiar with the getline() function.

■ Learn what the getline() function can do.

■ Learn how to use the getline() function.

Why Is an Entire Day Dedicated
to a Single Function?

You have seen a number of functions up to this point. Many of them expand functions
that you had in your basic compiler. For example, write_char() expanded functions
such as putch() by giving you the ability to write a character in color. In addition, you
gained the ability to place the cursor anywhere on the screen. With the functions that
you have learned up to this point, you can design a text graphics screen to look any
way you want.

What hasn’t been covered is retrieving data off the text graphic screen. There are
functions such as gets() and scanf() that can get data; however, they aren’t suited
for data entry within text graphic applications. The getline() function is being
presented as a replacement for these functions.

This still doesn’t explain why an entire day is needed to cover getline(). As you will
see, getting data from the screen can become complex depending on the amount of
functionality you build into your applications. The getline() function has been
developed with as much functionality as possible. With the getline() function you
will be able to do the following:

■ Get a string or a number. If a number is being entered, characters won’t be
accepted.

■ Use the right and left arrow keys to move within the entered field.

■ Use the backspace key to erase the preceding character.

■ Set up keys to be used to exit the entry. You’ll also be able to know which
key was used to exit.

297

10

■ Insert characters in the middle of the string.

■ Set up colors for the information being entered.

■ And more.

To accomplish all of the capabilities listed requires a powerful and large function. In
fact, the amount of code in the getline() function may be more than in some of the
programs you’ve written up to this point.

An Overview of the getline()
Function

The getline() function is best understood in steps. Figure 10.1 presents a breakdown
of the getline() function.

Figure 10.1. The breakdown of the getline() function.

As you can see, getline() breaks down into several groups of options. In using
getline(), you’ll need to use at least one of the set up options in order to set up the
colors that will be used. In addition, you’ll need to use the option to set up the exit
keys. Once you have executed getline() with these options, you’ll be ready to use the
input options which allows either numerics or alphanumerics to be entered.

A New TYAC.H Header File
Before getting into the code and the individual parts of the getline() function, a new
TYAC.H header file needs to be introduced. The getline() function needs several

298

The getline() Function
DAYDAY

10

Type

new constants. It also needs a prototype for it and several of the sub-functions that it
uses. Listing 10.1 presents a new TYAC.H header file which includes everything
needed for getline().

Listing 10.l. A new TYAC.H header file.

1: /* Program: TYAC.H
2: * (Teach Yourself Advanced C)
3: * Authors: Bradle y L. Jones
4: * Gregory L. Guntle
5: * Purpose: Header file for TYAC library functions
6: *===*/
7:
8: #ifndef _TYAC_H_
9: #define _TYAC_H_
10:
11: /* DOS and BIOS Interrupts */
12: #define BIOS_VIDEO 0x10
13: #define BIOS_KEY 0x16
14: #define DOS_FUNCTION 0x21
15:
16: /* BIOS function calls */
17: #define SET_VIDEO 0x00
18: #define SET_CURSOR_SIZE 0x01
19: #define SET_CURSOR_POS 0x02
20: #define GET_CURSOR_INFO 0x03
21: #define WRITE_CHAR 0x09
22: #define SET_COLOR 0x0B
23: #define GET_VIDEO 0x0F
24: #define WRITE_STRING 0x13
25:
26: /* BIOS used to set scrolling direction */
27: #define SCROLL_UP 0x07
28: #define SCROLL_DOWN 0x06
29:
30: /* DOS functions calls */
31: #define GET_DATE 0x2A
32:
33:
34: /* Types of Boxes */
35: #define DOUBLE_BOX 1
36: #define SINGLE_BOX 2
37: #define BLANK_BOX 3
38:
39: /* Box fill flags */
40: #define BORDER_ONLY 0
41: #define FILL_BOX 1
42:
43: /* Colors */
44: #define BLACK 0

299

10

45: #define BLUE 1
46: #define GREEN 2
47: #define CYAN 3
48: #define RED 4
49: #define MAGENTA 5
50: #define BROWN 6
51: #define WHITE 7
52: #define GRAY 8
53: #define LIGHTBLUE 9
54: #define LIGHTGREEN 10
55: #define LIGHTCYAN 11
56: #define LIGHTRED 12
57: #define LIGHTMAGENTA 13
58: #define YELLOW 14
59: #define BRIGHTWHITE 15
60:
61: #define BLANK ‘ ‘
62: #define SPACE ‘ ‘
63: #define NEWLINE ‘\n’
64: #define TAB ‘\t’
65: #ifndef NULL
66: #define NULL ‘\0’
67: #endif
68:
69: #define EOS 0
70: #define YES 1
71: #define NO 0
72: #define TRUE 1
73: #define FALSE 0
74:
75: #define CR 13
76: #define LF 10
77: #define EOL 13
78:
79: #define CLR_INS 1 /* Clear Inside Box Flag */
80: #define NO_CLR 0 /* Don’t Clear Inside the Box */
81:
82: #define CTR_STR 1 /* Centering a string on the
 screen */
83: #define NO_CTR_STR 0 /* Don’t center the string */
84:
85:
86: /* -------------------------------- *
87: * New Type Definitions *
88: * -------------------------------- */
89:
90: typedef int BOOLEAN;
91: typedef unsigned short PTR; /* 0 - 65535 */

continues

300

The getline() Function
DAYDAY

10

92: typedef char CHAR; /* -128 - 127 */
93: typedef unsigned char EXTCHAR; /* 0 - 255 */
94: typedef short NUM32K; /* -32768 - 32767 */
95: typedef unsigned short NUM64K; /* 0 - 65535 */
96: typedef long NUM2GIGA; /*-2,147,483,648 - 2,147,483,647 */
97: typedef unsigned long NUM4GIGA; /* 0 - 4,294,967,295 */
98: typedef unsigned char ARRAY; /* Used for creating an array */
99:
100:
101: /* ------------------------------ *
102: * KEYS *
103: * ------------------------------ */
104:
105: /* Numeric keypad scan codes */
106: #define HOME 71 /* home key */
107: #define UP_ARROW 72 /* up arrow */
108: #define PAGE_UP 73 /* page up */
109: #define LT_ARROW 75 /* left arrow */
110: #define RT_ARROW 77 /* right arrow */
111: #define END 79 /* end key */
112: #define DN_ARROW 80 /* down arrow */
113: #define PAGE_DN 81 /* page down */
114: #define INS 82 /* insert */
115: #define DEL 83 /* delete */
116: #define SHIFT_TAB 15 /* shift tab */
117: #define ENTER_KEY 28
118:
119: /* Function key scan codes */
120: #define F1 59 /* F1 KEY */
121: #define F2 60 /* F2 KEY */
122: #define F3 61 /* F3 KEY */
123: #define F4 62 /* F4 KEY */
124: #define F5 63 /* F5 KEY */
125: #define F6 64 /* F6 KEY */
126: #define F7 65 /* F7 KEY */
127: #define F8 66 /* F8 KEY */
128: #define F9 67 /* F9 KEY */
129: #define F10 68 /* F10 KEY */
130:
131: /* Other non scan keys as ASCII */
132:
133: #define BK_SP_KEY 8
134: #define ESC_KEY 27
135: #define CR_KEY 13
136: #define TAB_KEY 9
137: #define SPACE_BAR 32
138:

Listing 10.l. continued

301

10

139: /* ------------------------------------ *
140: * Getline Options *
141: * ------------------------------------ */
142: #define SET_DEFAULTS 0
143: #define SET_NORMAL 1
144: #define SET_UNDERLINE 2
145: #define SET_INS 3
146: #define GET_ALPHA 6
147: #define GET_NUM 7
148: #define CLEAR_FIELD 8
149: #define SET_EXIT_KEYS 9
150:
151: /*------------------------*
152: Function Prototypes
153: *------------------------*/
154: /* Gets the current date */
155: void current_date(int *, int *, int *);
156:
157: /* Positions the cursor to row/col */
158: void cursor(int, int);
159: /* Returns info about cursor */
160: void get_cursor(int *, int *, int *, int *, int *);
161: /* Sets the size of the cursor */
162: void set_cursor_size(int, int);
163:
164: /* clear the keyboard buffer */
165: void kbclear(void);
166: /* determine keyboard hit */
167: int kbhit(void);
168:
169: /* scroll the screen */
170: void scroll(int row, int col,
171: int width, int hieght,
172: int nbr, int direction);
173:
174: /* pause until ENTER pressed */
175: void pause(char *);
176:
177: /* Video mode functions */
178: void set_video(int);
179: void get_video(int *, int *, int *);
180:
181: /* Text Graphics functions */
182: void write_char(char, int, int);
183: void repeat_char(char, int, int, int);
184: void write_string(char *, int, int, int, int);
185: void box(int, int, int, int, int, int, int, int);
186: void set_border_color(int);
187: char getline(int, char, int, int, int, int, char *);
188:

continues

302

The getline() Function
DAYDAY

10

189: /* misc functions */
190: void boop(void);
191: void waitsec(double);
192: long get_timer_ticks(void);
193:
194: #endif

You should review this header file to ensure that you are familiar with everything
it contains. Lines 8, 9, and 194 used defined constants to prevent you from
including the header file more than once. This is a common practice used by

many programmers. If the constant _TYAC_H_ isn’t defined, then the header file hasn’t
been included before. You know this because line 9 defines this constant. If _TYAC_H_
has been defined, the file skips to line 194.

Lines 11 through 83 define several different groups of constants. Lines 11 through 31
contain the defined constants for the BIOS functions that you worked with on
previous days. Lines 27 and 28 contain the constants used with the scroll function
from Day 8. Lines 35 to 41 contain constants used with the box() function that you
created on Day 9. The colors are defined in lines 44 to 59. Various additional values
are defined in lines 61 to 83. These are values that can be used by other functions that
you create. This includes values for TRUE, FALSE, YES, NO, EOS (end of string),
and more.

Lines 90 to 98 contain type definitions. Several new types have been declared that will
be useful in your programs. Lines 106 to 137 declare type definitions for the keyboard
keys. These values will be used when setting the exit keys for getline() which is
covered later. Lines 142 to 149 contain the last of the defined constants. These
constants can be used instead of numbers when calling getline(). The rest of the
TYAC.H header file contains prototypes for the functions that should be in your
TYAC.LIB library after you complete today’s material.

Understanding the Use of getline()
Before presenting the code for the getline() function, the use of getline() needs to
be explained. By covering the usage first, you’ll find it much easier to understand the
actual code.

Listing 10.l. continued

Analysis

303

10

The prototype for getline() is:

char getline(int option, char cParm1, int iParm1, int iParm2,
 int iParm3, int iParm4, char *char_ptr);

As you can see, the getline() function has several parameters. The most important
parameter is the first, option. The option parameter determines exactly what getline()
is going to do. getline() gains its functionality through the option parameter. Based
on the option, the other parameters may or may not contain values. Because of the
multiple uses of the rest of the parameters, they have been given generic names.

Note: When a getline() parameter isn’t used, it’s filled with 0.

The Option Parameter
There are eight different options that can be used when calling the getline()
function. These options are based on a numeric value passed in option.

Options 0, 1, 2, and 3
If a value of 0, 1, 2, or 3 is passed to getline(), then different color values will be set.
The colors that can be set in getline() are as follows:

norm_color_fg The normal foreground color
norm_color_bg The normal background color

The normal colors are used for the color of the text that is being entered. If
you enter “BRADLEY”, it will appear in the normal colors.

high_color_fg The highlighted character’s foreground color
high_color_bg The highlighted character’s background color

The highlighted character is the character that is currently being entered
when the insert key is on. If the insert key is off, there won’t be a highlighted
character.

undr_color_fg The underline character’s foreground color
undr_color_bg The underline character’s background color

The getline() function has been written to display the extent of an enter-
able field. For example, if a string was to be entered that was 20 characters
long, getline() would display 20 underline characters on the screen. The
underline colors define the color of these underlines.

304

The getline() Function
DAYDAY

10

ins_color_fg The “INS” message’s foreground color
ins_color_bg The “INS” message’s background color

The getline() displays the characters “INS” in the lower-right corner of the
screen. This insert message is toggled on and off with the insert key. The
colors for this message are determined by the insert colors.

Each of the first four options set up different values. If you use option 1, you will set
all of the colors to default values along with several other default values. Option 1
enables the normal and highlight colors to be set. Option 2 enables the underline
colors to be set. Option 3 enables the insert message color, along with its position, to
be set.

Options 4 and 5
The values 4 and 5 are not used as options. These two values are left open for future
expansion of the getline() function.

Options 6 and 7
Options 6 and 7 are the options that allow getline() to get data. Option 6 accepts
the input of alphanumeric values. Option 7 accepts the input of numeric values. Along
with these options, you’ll also need to specify screen coordinates for the input and the
length of the value to be entered. These options will be detailed later.

Option 8
Using getline() with option 8 provides you with an alternative way to clear a string
to nulls. By calling getline() with option 8 before calling it with option 6 or 7, you
can ensure that no bad data is remaining in a variable that should be empty.

Option 9
This is the final option used with the getline() function. Option 9 enables you to
set up the exit keys for getline(). An exit key is a key that enables you to leave the entry
field. For example, the exit key for gets() is the enter key. The exit key returns control
back to the program. Option 9 enables you to set up the keys that you want to exit
the entry of a single field. Example of keys that are generally used for exiting are tab,
enter, shift+tab, F1, and F3.

Other getline() Parameters
The values passed in the other parameters are dependent upon which option is called.
The specific details of each parameter will be covered when getline() is analyzed in

305

10

the next section. Generally, the first parameter, cParm1, is rarely used. The next four
parameters, iParm1, iParm2, iParm3, and iParm4 are used to pass in numeric values. For
the options that set colors, the iParm# parmeters contain color values. For options 6,
7, and 8, these variables contain the starting location and the length for the
information to be entered. For option 9, the parameters contain the number of exit
keys that are defined.

The last parameter in the prototype is str_ptr. This is used in options 6, 7, 8, and 9.
In options 6 and 7, str_ptr contains the address of a character pointer. This address
is where the information retrieved will be placed. For option 8, it should also be the
location where data will be placed. Option 8 uses this pointer as the starting location
to be cleared to nulls.

Option 9 uses the str_ptr differently. Option 9 will use the str_ptr as the pointer
to the first exit_key in an array. These exit keys should be listed one after the other
in a character array. The values used for the exit keys are those defined in the TYAC.H
header file.

The Return Value of getline()
The return value of getline() is a character value. This value is the ASCII value of
the last key pressed before exiting getline(). This value is one of the keys defined as
a valid exit key with option 9.

The Code Behind getline()
Having an understanding of the options for getline() and the parameters prepares
you for the function itself. Following is the complete getline() listing. It contains
four different functions: getline(), get_it(), check_list(), and setup_exit_keys().
The getline() function uses get_it() with options 6 and 7 (getting data). The
setup_exit_keys() function is used with option 9.

Note: The getline() function uses several of the functions presented
earlier in this book. By keeping the getline() function in your
TYAC.LIB library, you’ll have access to these other functions. Addition-
ally, you’ll need a few more functions that you previously didn’t have.
The getline() function uses a function called boop() to make the
computer beep. The boop() function in turn requires two other functions.

306

The getline() Function
DAYDAY

10

Type Listing 10.2. GETLINE.C. The getline() function.

1: /* Name : getline.c
2: * Authors: Bradley L. Jones
3: * Gregory L. Guntle
4: *
5: * Purpose: Receive string inputs from the user through
6: * the keyboard. This routine replaces SCANF for
7: * reading keyboard responses from the user.
8: *
9: * Function : getline(opt,ch1,int1,int2,int3,int4,str_ptr)
10: *
11: * Enter with: opt = One of the following:
12: *
13: * 0 - Set default parameters
14: * norm_color_fg = WHITE
15: * norm_color_bg = BLACK
16: * high_color_fg = BRIGHTWHITE
17: * high_color_bg = BLACK
18: * undr_color_fg = GREEN
19: * undr_color_bg = BLACK
20: * ins_color_fg = YELLOW
21: * ins_color_bg = BLACK
22: * ins_row = 24
23: * ins_col = 70
24: * stop_key = CR_KEY
25: *
26: * 1 - Set highlight/normal colors for string
27: * int1 - foreground normal color
28: * int2 - background normal color
29: * int3 - foreground highlighted color
30: * int4 - background highlighted color
31: *
32: * 2 - Setup underline colors
33: * int1 - foreground color for underline character
34: * int2 - background color for underline character
35: * int3 - foreground color highlighting underline
36: * int4 - background color highlighting underline
37: *
38: * 3 - Setup INS message colors & row/col positioning
39: * int1 - foreground color for INS message
40: * int2 - background color for INS message
41: * int3 - Row where to display INS message
42: * int4 - Col where to display INS message
43: *
44: * 4 -
45: *
46: * 5 -
47: *
48: * 6 - Get alphanumeric input

307

10

49: * int1 - Upper left corner - row #
50: * int2 - Upper left corner - col #
51: * int4 - Max length of input
52: * str_ptr - Address for placing the chars
53: *
54: * 7 - Get numeric input
55: * int1 - Upper left corner - row #
56: * int2 - Upper left corner - col #
57: * int4 - Max length of input
58: * str_ptr - Address to store chars
59: *
60: * 8 - Clear char field value to NULLS
61: * int1 - Length of string for clearing
62: * str_ptr - Address of string to clear
63: *
64: * 9 - Clear and load valid exit keys
65: * The array is static and will remain
66: * until changed.
67: * There is no default value.
68: * int1 - # of keys in array
69: * str_ptr - Address of array (array name)
70: *
71: * Returns : (applies to options 6,7 only)
72: * Char type of ascii value of the last
73: * key pressed that is within VALID_EXIT_KEYS.
74: *
75: * --*/
76:
77: #include <string.h>
78: #include <conio.h>
79: #include “tyac.h”
80:
81: #define MAX_KEYS 17
82:
83: /*--------------------------------*
84: * Global static variables *
85: *--------------------------------*/
86:
87: static int norm_color_fg; /* foreground - normal color */
88: static int norm_color_bg; /* background - normal color */
89: static int high_color_fg; /* foreground - highlight */
90: static int high_color_bg; /* background - highlight */
91: static int undr_color_fg; /* foreground - underlines */
92: static int undr_color_bg; /* background - underlines */
93: static int ins_color_fg; /* foreground - INS message */
94: static int ins_color_bg; /* background - INS message */
95: static int st_col, end_col; /* constants */
96: static int length; /* string length */
97: static int row, col;
98: static int st_row; /* constants */

continues

308

The getline() Function
DAYDAY

10

99: static int ins_row; /* Row for INS message */
100: static int ins_col; /* Col for INS message */
101: static char stop_key; /* key to stop accepting input */
102:
103: /* valid exit keys loaded here */
104: static char VALID_EXIT_KEYS[MAX_KEYS];
105:
106: /*----------------------------------*
107: * Subroutines *
108: *----------------------------------*/
109:
110: char getline(int, char, int, int, int, int, char *);
111: char get_it(int, char *);
112: int check_list(char);
113: void setup_exit_keys(char *, int);
114:
115: /*--*
116: * Start of Function *
117: *--*/
118:
119: char getline(int option, char cParm1, int iParm1, int iParm2,
120: int iParm3, int iParm4, char *char_ptr)
121: {
122: int ctr; /* misc counter */
123: char last_key; /* Holds last key pressed & returns it */
124:
125: VALID_EXIT_KEYS[16] = ‘\0’; /* keep last key a null */
126:
127: switch (option)
128: {
129: case 0: /* set default parameters */
130: norm_color_fg=WHITE;
131: norm_color_bg=BLACK;
132: high_color_fg=BRIGHTWHITE;
133: high_color_bg=BLACK;
134: stop_key=CR_KEY;
135: undr_color_fg=GREEN;
136: undr_color_bg=BLACK;
137: ins_color_fg= YELLOW;
138: ins_color_bg= BLACK;
139: ins_row = 24;
140: ins_col = 70;
141: break;
142:
143: case 1: /* set colors */
144: norm_color_fg=iParm1;
145: norm_color_bg=iParm2;
146: high_color_fg=iParm3;
147: high_color_bg=iParm4;

Listing 10.2. continued

309

10

148: break;
149:
150: case 2: /* insert normal and high colors */
151: undr_color_fg=iParm1;
152: undr_color_bg=iParm2;
153: break;
154:
155: case 3: ins_color_fg = iParm1;
156: ins_color_bg = iParm2;
157: ins_row = iParm3;
158: ins_col = iParm4;
159: break;
160:
161: case 4: break;
162:
163: case 5: break;
164:
165: case 6: row = st_row = iParm1;
166: col = st_col = iParm2;
167: end_col = st_col + iParm4;
168: length = iParm4;
169: last_key = get_it(option,char_ptr);
170: break;
171:
172: case 7: row = st_row = iParm1;
173: col = st_col = iParm2;
174: end_col=st_col + iParm4;
175: length=iParm4;
176: last_key = get_it(option,char_ptr);
177: break;
178:
179: case 8: for (ctr=0; ctr < iParm1; ctr++)
180: char_ptr[ctr] = ‘\0’;
181: break;
182:
183: case 9: setup_exit_keys(char_ptr,iParm1);
184: break;
185:
186: } /* end of switch */
187:
188: return(last_key);
189:
190: } /* end of subroutine */
191:
192:
193:
194: /*--------------------------------------*
195: * subroutine: get_it() *
196: * *
197: * this actually gets the data once *

continues

310

The getline() Function
DAYDAY

10

198: * everything has been setup *
199: *--------------------------------------*/
200:
201: char get_it(int option, char *str_ptr)
202: {
203: int ins_pos;
204: int ch;
205: int str_ctr=0; /* tracks current character position */
206: int ins_on=FALSE; /* tracks INS key being pressed */
207: int prn_switch=FALSE;/* determines if char should be accepted */
208: int loop_exit=FALSE;
209: int test;
210:
211: /* -- */
212:
213: cursor(st_row,st_col);
214: repeat_char(‘_’, length, undr_color_fg, undr_color_bg);
215: write_string(str_ptr, norm_color_fg, norm_color_bg,
216: st_row, st_col);
217:
218: while (loop_exit == FALSE)
219: {
220: if ((ch=getch()) == 0) /* if scan code read next byte */
221: {
222: ch = getch();
223: switch (ch)
224: {
225: case HOME: /* goto to begining of string */
226: col = st_col;
227: cursor(row, col);
228: if (ins_on == TRUE)
229: write_string(str_ptr, norm_color_fg,
230: norm_color_bg, st_row,
231: st_col);
232: break;
233:
234: case END: /* end key - pos cursor at end */
235: col = strlen(str_ptr) + st_col;
236: cursor(row, col);
237: if (ins_on == TRUE)
238: write_string(str_ptr, norm_color_fg,
239: norm_color_bg, st_row,
240: st_col);
241: break;
242:
243: case DEL: /* 1 past end of string ? */
244: if (col != strlen(str_ptr) + st_col)
245: {
246: /* save current position */

Listing 10.2. continued

311

10

247: str_ctr = col;
248: /* if nxt pos is != null move it */
249: while (str_ptr[col-st_col+1] != ‘\0’)
250: {
251: /* the value is moved over */
252: str_ptr[col-st_col] = str_ptr
 [col-st_col+1];
253: col++; /* next position */
254: }
255: /* terminate end of string */
256: str_ptr[col-st_col] = ‘\0’;
257: /* reprint string */
258: write_string(str_ptr, norm_color_fg,
259: norm_color_bg, st_row,
260: st_col);
261: /* Go to end of line */
262: cursor(row, st_col+strlen(str_ptr));
263: /* Rewrite underline char */
264: write_char(‘_’, undr_color_fg,
 undr_color_bg);
265: /* restore cursor pos */
266: col = str_ctr;
267: /* Restore cursor position */
268: cursor(row,col);
269: }
270: if (ins_on == TRUE)
271: write_string(str_ptr,norm_color_fg,
272: norm_color_bg, st_row,
273: st_col);
274: break;
275:
276: case INS: if (ins_on == FALSE)
277: {
278: write_string(“INS”, ins_color_fg,
279: ins_color_bg, ins_row,
280: ins_col);
281: ins_on=TRUE;
282: }
283: else
284: {
285: write_string(“ “, ins_color_fg,
286: ins_color_bg, ins_row,
287: ins_col);
288: write_string(str_ptr, norm_color_fg,
289: norm_color_bg, st_row,
290: st_col);
291: ins_on=FALSE;
292: }
293: break;
294:

continues

312

The getline() Function
DAYDAY

10

295: case LT_ARROW: if (col > st_col)
296: {
297: cursor(row, --col);
298: if (ins_on == TRUE)
299: write_string(str_ptr, norm_color_fg,
300: norm_color_bg, st_row,
301: st_col);
302: }
303: break;
304:
305: case RT_ARROW: if (col < end_col &&
306: ((col-st_col) < strlen(str_ptr)))
307: {
308: cursor(row, ++col);
309: if (ins_on == TRUE)
310: write_string(str_ptr, norm_color_fg,
311: norm_color_bg, st_row,
312: st_col);
313: }
314: break;
315:
316: default: loop_exit = check_list(ch);
317: if (ins_on == TRUE)
318: write_string(str_ptr, norm_color_fg,
319: norm_color_bg, st_row,
320: st_col);
321: /* key a valid exit key ?*/
322: if (loop_exit == FALSE)
323: boop();
324: break;
325:
326: } /* end of switch */
327: } /* end of if */
328: else
329: {
330: switch (ch) /* test for other special keys */
331: {
332: case BK_SP_KEY:
333: if (col > st_col)
334: {
335: /* move cursor left 1 */
336: cursor(row, --col);
337: /* save cur curs pos, len determ ltr */
338: str_ctr = col;
339: /* if next pos != null move it ovr */
340: while (str_ptr[col-st_col+1] != ‘\0’)
341: {
342: /* move next char over */

Listing 10.2. continued

313

10

343: str_ptr[col-st_col] = str_ptr
 [col-st_col+1];
344: /* next position */
345: col++;
346: }
347: /* End string with a null */
348: str_ptr[col-st_col] = ‘\0’;
349: write_string(str_ptr, norm_color_fg,
350: norm_color_bg, st_row,
351: st_col);
352: /* Move cursor to end of line */
353: cursor(row, st_col+strlen(str_ptr));
354: /* Rewrite underline char */
355: write_char(‘_’, undr_color_fg,
 undr_color_bg);
356: /* restore current cusor pos */
357: col = str_ctr;
358: /* Restore cursor position */
359: cursor(row,col);
360: }
361: break;
362:
363: default: if (col < end_col)
364: {
365: /* get numeric input */
366: if (option == 7 && (ch >= 48 &&
 ch <= 57))
367: {
368: prn_switch=TRUE;
369: }
370: /* greater than space */
371: if (option == 6 && ch > 31)
372: {
373: /* get alphanumeric input */
374: prn_switch=TRUE;
375: }
376: if (prn_switch==TRUE)
377: {
378: /* field not full = shift */
379: if(ins_on==TRUE && strlen(str_ptr)
 <length)
380: {
381: /* assign str_ctr to the cur
 location */
382: str_ctr=strlen(str_ptr);
383: while (str_ctr !=col-st_col)
384: {
385: str_ptr[str_ctr] = str_ptr
 [str_ctr-1];

continues

314

The getline() Function
DAYDAY

10

386: /* point to previous position */
387: str_ctr--;
388: }
389: /* add character into string */
390: str_ptr[col-st_col]=ch;
391: write_string(str_ptr, norm_color_fg,
392: norm_color_bg, st_row,
393: st_col);
394: write_char((char)ch, high_color_fg,
395: high_color_bg);
396: cursor(row, ++col);
397: prn_switch=FALSE;
398: } /* end of ins_on and strlen test */
399: else
400: {
401: /* INS off put a char */
402: if (ins_on==FALSE)
403: {
404: /* add character into string */
405: str_ptr[col-st_col]=ch;
406: write_string(str_ptr, norm_color_fg,
407: norm_color_bg, st_row,
408: st_col);
409: cursor(row, ++col);
410: prn_switch=FALSE;
411: }
412: else
413: {
414: /* ins_on is TRUE and trying */
415: /* to put a char past end */
416: boop();
417: }
418: }
419: } /* end of prn == TRUE test */
420: else
421: {
422: /* exit key? */
423: if((loop_exit = check_list(ch)) == FALSE)
424: {
425: /* not a valid exit key */
426: boop();
427: }
428: else
429: {
430: write_string(str_ptr, norm_color_fg,
431: norm_color_bg, st_row,
432: st_col);
433: }

Listing 10.2. continued

315

10

434: }
435: } /* end of if from (col < end_col) */
436: else /* from (col < end_col) */
437: {
438: /* exit key? */
439: if ((loop_exit = check_list(ch)) == FALSE)
440: {
441: /* not a valid exit key */
442: boop();
443: }
444: else
445: {
446: write_string(str_ptr, norm_color_fg,
447: norm_color_bg, st_row,
448: st_col);
449: }
450: }
451: break;
452:
453: } /* end of switch */
454: } /* end of else */
455: } /* end of while loop */
456:
457: return(ch);
458:
459: } /* end of subroutine getline */
460:
461: /* -- *
462: * function: check_list() *
463: * *
464: * This subroutine checks the key pressed against *
465: * a list of keys that can end the procedure. *
466: * It receives the key pressed and returns TRUE *
467: * if key is in the list, else FALSE if not in *
468: * list. *
469: * -- */
470:
471: int check_list(char key_pressed)
472: {
473: /* return a true or false to return_code */
474: int return_code=FALSE;
475: int loop_ctr = 0;
476:
477: while (loop_ctr <= MAX_KEYS && !return_code)
478: if (key_pressed == VALID_EXIT_KEYS[loop_ctr++])
479: return_code=TRUE;
480:
481: return(return_code);

continues

316

The getline() Function
DAYDAY

10

482: }
483:
484: /* -- *
485: * function: setup_exit_keys(keys_array,num) *
486: * *
487: * Sets up valid exit keys in the VALID_EXIT_KEYS *
488: * array. *
489: * *
490: * Enter with: - keys_array *
491: * char array of ASCII key values *
492: * - num *
493: * nbr of elements to processed *
494: * Returns: Nothing *
495: * -- */
496:
497: void setup_exit_keys(char *keys_array, int num)
498: {
499: int ctr; /* misc counter */
500:
501: for (ctr=0; ctr < num; ctr++)
502: {
503: /* load valid keys */
504: VALID_EXIT_KEYS[ctr] = *(keys_array + ctr);
505: }
506:
507: while (ctr < MAX_KEYS)
508: {
509: /* clear unused portion */
510: VALID_EXIT_KEYS[ctr++] = ‘\0’;
511: }
512: }

As you can see, this is an extremely long function. Having read the material
presented earlier today, you should be able to follow some of this listing. To help
in your understanding of getline(), the function contains many comments. In

fact, the first 75 lines of the function are dedicated to a detailed description of the
parameters.If you haven’t already, then you should read these comments. They
include a description of what each of the parameters that is passed to getline() should
be.

Lines 87 to 104 contain variables that will be used by getline(). These variables are
all defined as static. This is so their values will be retained for subsequent calls to
getline(). The comments within the code state what each variable is used for.

Listing 10.2. continued

Analysis

317

10

Note: If you want the default values automatically set in getline(), you
should assign the default values to the variables as they are declared. For
example, line 87 would become:

static int norm_color_fg = WHITE;

Lines 110 to 113 are the last of the set-up before starting the getline() function.
These lines declare the prototypes to the subroutines used by getline(). As you can
see, the getline() function has three subroutines or functions that it uses.

Lines 119 to 190 contain getline(). This portion of the getline() process is
straightforward. Line 125 ensures that the array that contains the exit keys (or will
contain them if they aren’t yet set up) ends with a null value. Line 127 then calls a
switch statement. The program switches based on the option that was passed.

If the option was zero, the defaults will be set. The defaults include all of the colors,
an exit key (line 134), and a position for the “INS” message (lines 139 and 140). The
colors that have been set here—and that are stated in the comments in lines 14 to 24—
are the defaults that I have choosen. The values you choose for your default values
should be those that you will use most often. You can always change these values using
getline()’s other options.

Options 1, 2, and 3 are set in lines 143 to 159. These options set different sets of the
variables. By looking at each of these options, you’ll see which parameters are
translated to which variables.

Options 4 and 5 in lines 161 and 163 don’t exist. These are left for future growth. If
you later decide to expand on getline(), these two values are available for options.

Options 6 and 7 in lines 165 to 170 and 172 to 177 are identical. These functions each
set a row and column value to the iParm1 and iParm2 parameters. Also set are st_row
and st_col which are static constants used to retain the initial row and column
positions. Lines 167 and 174 calcuate the ending column, end_col, of the information
being input. Each of these two cases ends with a call to get_it() which does the work
of retrieving the input information for getline().

Option 8 is covered in lines 179 to 181. This case is easy to follow. A for loop is used
to set each position of the passed string, char_ptr, to null values.

Option 9 in lines 183 and 184 is the final option. This option simply calls the
setup_exit_keys() subroutine which is covered later today.

318

The getline() Function
DAYDAY

10

The get_it() Subroutine
The get_it() function is used to get both numeric and alphanumeric values. This
function continues from line 201 through line 459. Although this function is very
long, it’s easy to follow because it’s broken into segments by case statements.

Before starting into its main loop, the get_it() function sets up a few keys. In
addition, line 213 sets the cursor to the starting position that was set in the getline()
function. Line 214 then sets the underscore on the screen using the repeat_char()
function. Line 215 writes the value in the string that may have been initially passed
to getline() and forwarded to get_it(). Line 218 then begins a large while loop.

The while loop in line 218 begins the process of getting each character one at a time.
Line 220 checks to see if the first character retrieved with getch() is a 0. If it is, the
key entered is a scan code. A scan code is part of an extended key such as the home key,
the end key, or the delete key. If a scan code is read, a second key is read to get the
second half of the scan code. The second character contains a key value that is used
in a switch statement in lines 225 to 326. The functions for each of the different keys
is detailed later today.

If the initial character read in line 222 was not equal to 0, then the else statement in
line 328 is executed. In this case, the character is a normal ASCII character. Included
with the ASCII characters are characters such as the backspace key. Any ASCII
characters that need special processing are checked first. For getline(), only the
backspace character, BK_SP_KEY, needs to be handled specially. (All the other special
exit keys are scan codes handled by the if in line 220.)

Line 363 is the default case for ASCII characters. It’s here that getline() will
determine whether the appropriate key has been entered.

Getting the Characters (Lines 363 to 451)
In lines 366 to 375, the character entered is compared with ASCII values to determine
if it is valid based on the getline() option. For option 7, the character must be an
ASCII value from 48 to 57 (line 366). For option 6, the character entered must be
greater than 31. If the character read fits either of these options, then the prn_switch
is set to TRUE.

If the character passed (the prn_switch was set to TRUE), then lines 364 to 435 are
executed. Line 379 then checks to see if the insert key is on. If it is, and if the length
of the string is less than the total length of the field being entered, then the character
is added to the string. Because the character could be in the middle of the string, the

319

10

rest of the string is adjusted to the right (lines 383 to 388). Line 391 then redisplays
the updated string to ensure that it’s displayed on the screen properly. Because the
insert key is on, the added character should be highlighted. This is done in line 394
before the cursor is adjusted. If the insert key was off, or if the character is being set
in a field that is already full, then the else in lines 399 to 417 is executed. If the insert
key is off, then the character is added to the string at the current position (line 405),
the string is rewritten to ensure that it is displayed properly (line 406), and the cursor
is repositioned (line 409). If the insert key is on and the string is full, then the computer
beeps with the boop() function, which is covered later today.

If the character entered didn’t meet the valid characters for options 6 or 7, then the
else statement in line 420 is executed. In this else, the character entered is checked
to see if it is actually an exit key. This is accomplished by using the check_list()
function. The check_list() function in lines 461 to 482 simply loops through the
exit key array to see if a match is found. If a match is found, a code of TRUE is returned
in line 481. If the key isn’t a valid exit key, the value of FALSE is returned. This value
of FALSE causes the get_it() function in line 426 to execute boop(), which beeps the
computer. This is done because the character entered wasn’t valid for the option, nor
was it an exit key. If the key was a valid exit key, then line 430 reprints the string to
the screen, and the loop_exit causes the looping to end along with getline().

The Backspace Character (Lines 332 to 361)
The backspace character is a special case that is handled in lines 332 to 361. If the
current position isn’t the first position, then the code for the backspace character is
entered in lines 335 to 359. The code in these lines starts by moving the cursor to the
left one column (line 336). It then shifts each character one space to the left to
effectively delete the character that was backspaced over. Line 349 then rewrites the
string to the screen to ensure that it is displayed correctly. Because this moving of the
characters to the left will mess up the underlines that mark the end of the field, lines
353 to 356 redraw them.

The Delete Key (Lines 243 to 274)
The delete key (DEL) works nearly identically to the backspace character. The main
difference is the cursor isn’t moved to the left like the backspace. Instead, the function
shifts the characters starting to the right of the cursor. Each is shifted one space to the
left. The string is then rewritten, and the underscores for the field redrawn.

320

The getline() Function
DAYDAY

10

The Home Key (Lines 225 to 232)
The home key (HOME) is much easier to follow than the delete or backspace key. The
home key simply adjusts the cursor position to the starting column. If the insert
character is on, the string is redrawn to ensure it is displayed correctly.

The End Key (Lines 234 to 241)
The end key (END) works just like the home key. Instead of moving the cursor to the
beginning of the string, it is moved to the end of the entered characters.

The Insert Key (Lines 276 to 293)
The insert key (INS) is different from the others. If the insert key wasn’t already on,
ins_on is equal to FALSE, then the “INS” string is written in the lower-right corner of
the string and ins_on is set to TRUE. If the insert key was on, then a blank string is
written over the “INS” that is in the lower-right corner and the flag is set to FALSE.
This flag was used when entering a key earlier.

The Left Arrow (Lines 295 to 303)
If the cursor isn’t already at the beginning of the field being entered, the left arrow key
(LT_ARROW) executes lines 297 to 302. The left arrow key adjusts the cursor by
subtracting one from the column, and then redisplaying it. This, in effect, moves the
cursor one space to the left. If the insert key was on, then the string is redisplayed to
ensure that it is correct on the screen.

The Right Arrow (Lines 305 to 314)
The right arrow (RT_ARROW) does just the opposite of the left arrow. In line 305,
it first checks to see if the cursor is already at the end of the string. If it isn’t, then one
is added to the column, and the cursor is redisplayed. This has the effect of moving
the cursor one space to the right.

The Default Scan Key
If the scan key entered wasn’t one of the designated keys, then the default case is
executed in lines 316 to 324. The default case checks to see if the entered key is an exit
key (line 316). If it is, then the loop_exit flag is set. After this test, the string is
redisplayed in line 318 to ensure that it is properly presented on the screen. If an exit
key wasn’t entered in this default case, then boop() beeps the computer in line 323 to
signal that a bad key was entered.

321

10Type

The setup_exit_keys() Subroutine
The setup_exit_keys() function is all that is left to the getline() function. This
function initializes the VALID_EXIT_KEYS array to the keys provided by the calling
program. Each key in the array passed by the calling program is placed in the array.
Any array positions that aren’t used are then filled with null values (lines 507 to 511).

The boop() Function
The boop() function is used by getline() to cause the computer’s speaker to beep.
This function, which is presented in Listing 10.3, is also useful at other times, and
therefore, makes a good addition to your TYAC.LIB library.

Listing 10.3 BOOP.C. The boop() function.

1: * Program: boop.c
2: * Authors: Bradley L. Jones
3: * Gregory L. Guntle
4: *
5: * Purpose: Toggles the speaker to produce a sound. This
6: * sound is used for notifying the user of an
7: * invalid key pressed.
8: *
9: * Note: This is not an ANSI compatible function. When
10: * compiled, you may receive warnings. The value
11: * of result is not used; however, it is needed
12: * in order to compiler on some computers.
13: *--*/
14:
15: #include <conio.h>
16: #include “tyac.h”
17:
18: #define CLOCKFREQ 1193180L /* Timer frequency */
19: #define SPKRMODE 0xB6 /* Set timer for speaker */
20: #define T_MODEPORT 0x43 /* Timer-mode port */
21: #define FREQPORT 0x42 /* Frequency control port */
22: #define FREQ0 0x12c /* A frequency */
23: #define DIV0 CLOCKFREQ / FREQ0 /* Set frequency to use */
24: #define CLICK .15 /* Tone duration */
25:
26: #define SPKRPORT 0x61 /* Speaker port */
27: #define SPKRON 0x03 /* On bits for speaker */
28:
29:
30: void boop()

continues

322

The getline() Function
DAYDAY

10

31: {
32: unsigned char port0;
33: unsigned int div0 = DIV0*2;
34: float delay = CLICK;
35: int result;
36:
37: result = outp(T_MODEPORT, SPKRMODE); /* setup timer */
38: port0 = inp(SPKRPORT); /* get old port setting */
39:
40: result = outp(FREQPORT, (div0 & 0xFF)); /* send low byte */
41: result = outp(FREQPORT, (div0 >> 8)); /* send high byte */
42: result = outp(SPKRPORT, (port0 | SPKRON)); /* turn on speaker */
43:
44: waitsec(delay); /* wait */
45:
46: result = outp(SPKRPORT, port0); /* restore original setting */
47: }

This function uses the outp() and inp() functions to send information to the
speaker port. These aren’t ANSI-compatible functions. Because of this, the
listing may not be compatible with all compilers.

Lines 18 to 27 define several constants that are then used in the actual code. The
boop() function creates a beep by writing information directly to the speaker port.
Before doing so, line 38 saves the original port setting. Line 46 then restores
the settings.

Lines 41 and 42 send the values to the port. Line 42 then turns on the speaker. The
speaker will then remain on until turned off. The speaker is turned off when
the original setting is restored. To allow the beep to last long enough to be heard,
the program is paused using the waitsec() function in line 44. The waitsec()
function is a new function that is covered next.

The waitsec() Function
The waitsec() function causes the computer to pause for a specified period of time,
which is defined in seconds. Most people choose to use a looping function to pause
the computer. This may be coded as follows:

for(ctr = 0; ctr < 10000; ctr++) { /* pausing */ };

This will cause the computer to pause for different lengths of time depending on how
fast the computer can process the for loop. This can cause a problem because you can

Listing 10.3. continued

Analysis

323

10

Type

never be sure how long the loop will last. The waitsec() function gets around this
problem. Listing 10.4 presents the waitsec() function.

Listing 10.4. WAITSEC.C. The waitsec() function.

1: /* Program: waitsec.c
2: * Authors: Bradley L. Jones
3: * Gregory L. Guntle
4: *
5: * Purpose: Causes the program to wait a number of seconds.
6: *
7: * Enter with: seconds - Number of seconds to pause program.
8: *
9: * Returns : N/A
10: * -- */
11:
12: void waitsec(double secs)
13: {
14: unsigned long count0, count;
15:
16: count0 = get_timer_ticks();
17: count = count0 + secs * 18.2;
18: while (get_timer_ticks() < count);
19:
20: }

The waitsec() function uses the computer’s timer to determine exactly how
much time has passed. The function starts by getting the number of timer ticks
using the get_timer_ticks() function. Listing 10.5 will present the

get_timer_ticks() function. Once the timer tick count is obtained, it is used as a base
to determine at what number the time will be up. In a second, 18.2 ticks will occur.
By taking 18.2 times the number of seconds requested to wait, you determine the total
number of ticks that must occur. This calculated number is added to the original
number that was received by the call to get_timer_ticks() (line 17). The program
is then put into a while loop that continuously calls the get_timer_ticks() function
until the returned value is a number greater than the number that was calculated. Once
the appropriate number of ticks has passed, the function returns.

The get_timer_ticks() Function
The get_timer_ticks() function is a new BIOS function. As stated in the analysis of
the waitsec() function, the get_timer_ticks() function simply returns the computer’s
current tick counter value. Listing 10.5 presents this function.

Analysis

324

The getline() Function
DAYDAY

10

Type
Listing 10.5. GETTICKS.C. The get_timer_ticks()
function.

1: /* Program : getticks.c
2: * Authors : Bradley L. Jones
3: * Gregory L. Guntle
4: *
5: * Purpose : Returns the number of clock ticks.
6: *
7: * Function : get_time_ticks()
8: *
9: * Enter with: N/A
10: *
11: * Returns : Number of clock ticks that has elapsed.
12: * This is a long value.
13: * -- */
14:
15: #include <dos.h>
16:
17: #define INT_TIME 0x1A
18:
19: long get_timer_ticks()
20: {
21: union REGS inregs;
22: long tc;
23:
24: inregs.h.ah = 0;
25: int86(INT_TIME, &inregs, &inregs);
26: tc = ((long) inregs.x.cx) << 16; /* get high bytes */
27: tc += inregs.x.dx; /* add low bytes */
28: return(tc);
29: }

There isn’t a lot to analyze about this listing. Interrupt 0x1Ah is used to get the
current clock tick count. The values returned in the x.cx and x.dx registers are
used to determine the exact number of ticks. Line 28 then returns this value.

Note: The new functions that you have created today should be added to
your TYAC.LIB library. This library will be used in creating the programs
throughout the rest of this book.

Analysis

325

10

Type

Using getline()
Now, you are ready to use getline() in a program. Listing 10.6 presents a very simple
program that uses the getline() function. This program in Listing 10.6 will allow a
string to be entered.

Listing 10.6. GL_TEST.C using the getline() function.

1: /* Program: gl_test.c
2: * Author: Bradley L. Jones
3: * Gregory L. Guntle
4: * Purpose: Demonstrate the getline function.
5: *==*/
6:
7: #include <stdio.h>
8: #include “tyac.h”
9:
10: int main()
11: {
12: char ch;
13: char strng[40];
14: int i;
15: char exit_keys[] = {ESC_KEY, F1, F10, CR_KEY};
16:
17: /* Initialize getline w/defaults */
18: ch = getline(0,0,0,0,0,0,0);
19: /* Clear the array to hold input */
20: ch = getline(8,0,40,0,0,0,strng);
21: /* Load valid exit keys */
22: ch = getline(9,0,4,0,0,0,exit_keys);
23:
24: write_string(“Enter string:”, LIGHTBLUE, BLACK, 10, 5);
25: ch = getline(6,0,10,20,0,20,strng); /* Get line */
26:
27: printf(“\n\nThe string that was entered = %s\n”,strng);
28: printf(“The key used to exit getline is: “);
29: switch(ch)
30: {
31: case ESC_KEY: printf(“Esc key\n”);
32: break;
33: case F1: printf(“F1 key \n”);
34: break;
35: case F10: printf(“F10 key\n”);
36: break;
37: case CR_KEY: printf(“CR key\n”);
38: break;
39: default: printf(“Unknown\n”);
40: break;

continues

326

The getline() Function
DAYDAY

10

41: }
42:
43: return 0;
44: }

Listing 10.6. continued

This is a short program that does a lot of work by using the getline() function.
It’s a good program for showing just how the getline() function and its options
should be used. Lines 7 and 8 include the appropriate header files. The TYAC.H

header file should be the same as the one presented in Listing 10.1.

The main part of the program starts in line 10 where several variables are declared. In
line 15, the character array, exit_keys is declared and initialized to four keys. The
constants defined in the TYAC.H header file are used as the values for the exit keys.
In your programs, you should create a similar character array that contains the keys
that will stop entry of information. From line 15, you can see that the escape key, the
F1 function key, the F10 function key, and the carriage-return (or enter) key will all
stop entry of information.

Line 18 presents the first call to getline(). The first parameter is the option
parameter. In the case of line 18, option 0 is being called. Option 0 sets the default
colors and values for getline(). Line 20 calls getline() a second time. In Line 20,
option 8 is used. Option 8 clears the field passed in the last parameter to null values.
In this case, the strng character array is being set to nulls to ensure that there is no bad
data in it. It’s a good practice to always initialize your data fields so that you are sure
what is in them.

Line 22 calls the getline() function a third time. With this call, option 9 is used. This
sets up the option keys that were defined in the last parameter, exit_keys. Once this

Analysis

Output

327

10

call is made, you have set up getline() for the rest of the program. In this case, that
is only one more call to getline(); however, generally, you will be calling getline()
with options 6 or 7 several times after these initial setup calls.

Line 24 prints a prompt on the screen so that the user will know what to enter. This
prompt can be seen in the output. Line 25 then calls getline() with option 6. Option
6 enables the user to enter a string. In this case, the string will be displayed at row 10
and column 20. The string can be up to 20 characters long. It will be stored in strng.
All this was stated in the call to getline() on line 25.

With the call in line 25, getline() does its job of enabling the user to input data. If
the insert key is pressed, then the “INS” message will be toggled on and off. In
addition, if insert is on, then the inserted character will be highlighted. Once the user
presses one of the exit keys, getline() returns control to the key pressed. The rest of
this program prints what was entered. In addition, lines 29 to 41 display which exit
key was used to exit.

You should take time to play with this program and the other getline() options.
Practice setting up different colors and different exit keys. The getline() function
will be a critical function in creating the applications later in this book.

DO DON’T
DO understand the getline() function. It will be used intensively on
Day 13.

DO initialize data fields if you are unsure what is in them. This way you can
be certain.

DON’T forget to set up your exit keys when using the getline() function.
You need to define what values can be used to exit the function.

Summary
Today’s materials present a function that will replace gets() and scanf() in getting
data from the screen. This function, called getline(), will provide you with much
more functionality than the functions generally provided. The getline() function
will allow text or numeric information to be entered. In addition it will allow for color
and cursor placement. In addition to the getline() function, several other functions

328

The getline() Function
DAYDAY

10

are presented. These functions are boop(), waitsec(), and get_timer_ticks(). These
functions are used by getline() and can also be used by your other functions.

Q&A
Q Why can’t gets() be used instead of getline() for reading character

strings?

A gets() does not enable you to have control over the color or position of the
text being entered. You could use a function such as cursor() to place the
prompt in the correct location before reading; however, you’ll still have
problems. The additional problem is that gets() won’t limit the length of
the string that you are reading. If you have a last name field that is only 15
characters, getline() will enable you to read only 15 characters. This is not
true with gets().

Q Why can’t scanf() be used instead of getline() for reading character
strings?

A scanf() is another good function to use; however, like gets(), it isn’t as full-
featured as getline(). (See the answer to the previous question.)

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned.

Quiz
1. What is the purpose of getline()?

2. What does boop() do?

3. What is a reason for using boop()?

4. What is the advantage of waitsec() over the pause() function that you
learned on Day 9?

5. How do you set the getline() input text color to yellow on red?

329

10

6. What are the default colors for getline()?

7. What is the difference between getline()’s option 6 and option 7?

Exercises
1. Add the functions that you created today to your TYAC.LIB if you have not

done so already. The functions from today are:

getline()

boop()

waitsec()

get_timer_ticks()

Note: get_it() and setup_exit_keys() are a part of getline() so they
don’t need to be added on their own.

2. BUG BUSTER: What, if anything, is wrong with the following:

#include <stdio.h>

#include “tyac.h”

int main()

{

 char ch;

 char strng[40];

 ch = getline(0,0,0,0,0,0,0);

 ch = getline(8,0,40,0,0,0,strng);

 write_string(“Last name:”, LIGHTBLUE, BLACK, 10, 8);

 ch = getline(6,0,10,20,0,20,strng); /* Get line */

 return 0;

}

330

The getline() Function
DAYDAY

10

3. Use the functions that you have learned to create a box on the screen. In the
box, display a message and ask the user to enter Y or N. Use the getline()
function to get the Y or N.

4. Modify Exercise 3 to beep if a wrong character is entered.

5. ON YOUR OWN: Use the getline() function to create a data entry screen.
Use the functions that you have used in the previous chapters also.

Note: Day 13 does just this! It uses getline() and most of the other
functions presented so far to create an entry and edit screen.

