Reporting

WEEK

666

Reporting

An application that tracks data is great. Being able to view information on the screen
makes the application useful; however, most applications require the capability to
access the information in a printed format. Today you will:

O Add additional menus to the Record of Records! program to support
reporting.

Discuss the concept behind reporting.

Do prototypes for a few reports.

Add reports that access a single file.

Work with reports that access multiple files.

Work with a report that only prints selected records.

o o o o o g

Understand the importance of providing flexibility for reporting.

Is Reporting Important?

On the entry and edit windows, you can only see records one at a time. Many times
this is inadequate. Additionally, there are times when you will want to share the
information that is stored in your database with others. Reporting enables you to view
or print your data in forms different from the form that you see it in on the entry and
edit screen.

Before you start creating reports, you should do a bit of preplanning just as you did
with the entry and edit screens. With the entry and edit screens, you created a
specification. With reporting, you could also create a specification. On simpler
reports, a specification may not be needed. What is almost always needed before
coding a report is a prototype.

Prototyping Reports

While specifications aren’t always required, a prototype is almost always required. If
you are developing an application for others, you will be able to present them with a
prototype. If they suggest changes, you can change the prototype. You wouldn’t have
to change the code because you would not have started it yet. Changing the prototype
is much easier than changing the code.

The Record of Records! application will have several reports. There will be three
different reports listing data from each file. These will be followed by a single report
that will be accessible in multiple ways.

Simple List Reports

Three of the four reports will simply list specific information out of each database.
These lists are good for verifying that each database contains the information that you
expect. In addition, lists can serve many other uses. For example, by printing a list of
medium codes and their descriptions, you can use it when entering Musical ltems.
You could print a list from the Group file to show others what groups you listen to.
A list of your musical items would be good to place in a safe place for insurance
purposes. Lists are a common type of report.

Note: A list is a report that simply lists fields from a file. Lists generally
follow the format of one record per line. You will see this in the proto-
types presented later.

Before being able to create these reports, you should look at the prototypes. Following
will be the prototypes for the Medium Code List and the Group Information Code
List. Creating a prototype for the Musical Items List will be left for you to do in an
exercise at the end of today.

The List of Medium Codes Prototype
The first prototype presented is the List of Medium Codes prototype.

List of Medium Codes
99/99/99

Code Description

XX)3,:0.0.0.9.0.9.0.9.9.0.0.9.90.909.99.990.90.99.990.90.990.90.90
XX 19,:0.9.0.9.9.0.0.9.9.0.0.9.9.0.90.99.990.990.990.99.90.90.90.004
AL Album

CcDh Compact Disc

*** End of Report ***

There are several features about this prototype you should be aware of. First is the date
that is present under the heading. It is always good to include the current date on a
report. This enables the person using the report to know when the information was
printed. If an old date is on the report, then there is a good chance the information
is out-of-date.

667

Reporting

This prototype shows a great deal more. The title and column headings are presented
exactly as they will appear, which includes their line spacing. The data is then
presented. First, several xs are presented followed by two examples of “real” data. The
purpose of the xs is to show exactly where the data will be. This includes the size of
the data.

One final comment should be made about the prototype. The date is displayed with
9s instead of xs. This is because the date is composed of numbers. The code and
description is composed of xs because they are alphanumeric fields. In creating your
prototypes, you should use 9s for numeric fields and xs for alphanumerics.

Tip: Not all reports will print every field. In addition, some longer
\ fields may be truncated (that is, chopped off). The number of xs
A should signify how may digits or characters should be printed.

The Group Information List’s Prototype

The Group file contains more information than will fit on asingle line. Because of this,
you must be a little more creative in creating the prototype.

List of Group Information
99/99/99

Date
Group Formed Type of Music

XXXKXXXXXKXXXXXXXXXXXX XXX 99/99/99 XXXXXXXXXXXXXXXXXXXX

Members: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
) 9.9.9.9.0.9.0,0.9.9.0.0.0.9.9.9.9.9.0.0,9,.0.0.0.0.9.9.9.0
19.9.9.9.0.9.:0,9.9.9.0.0,9.9.9.9.9.0.0.9.9,0,0.0.9.9.9,0,0.
)0 0.0.0.0.0,0.00.0.0.0.00.0.0.000.099909999.998
) 9.9.9.9.0.9.0,0.9.9.0.0.0.9.9.9.9.9,0.9,.9,0.0.0.0.9.9.9.0.
19.9.9.9.0.9.:0,9.9.9.0.0,9.9.9.9.9.0.0.9.9,0,0.0.9.9.9,0,0.

XXXKXXXXXKXXXXKAXKXXXKXXXX 99/99/99 XXXXXXXXXKKXXXXXXXXX
Members: XXXXXXXXXXXXXXXXXXXXXXXX XXX XXX

)G 00.0.0.0.0.00.0.0.0.0.0.0.0.0.00.09900999.9904
)0 0.0.0.0.0,0.00.0.0.0.00.0.0.000.09999999.998

668

) 9.9.9.9.0.9.0,0.9.9.0.0.0.9.9.9.9.9,0.0,.9,0.0.0.0.9.9.9.0.
19.9.9.9.0.0.:0,9.9.9.0.0.9.9.9.9.9.0.0.9,9,0,0.0.9.9.9,0,0.
)0 0.0.0.0.0,0.00.0.0.0.00.0.0.000.099909999.998

COWBOY JUNKIES 01/01/87 Alternative

Members: Alan Anton
Margo Timmins
Michael Timmins
Peter Timmins

Violent Femmes 01/01/83 Alternative

Members: Gordon Gano
Brian Ritchie
Victor DelLorenzo

*** End of Report ***

This prototype follows the same constructs as the previous prototpye. xsand 9s mark
the location of the fields. Because all the fields don’t fit on asingle line, part of the data
falls on the following lines. You should notice that the additional lines are indented
several spaces so that it is easy to follow where new records start.

19

Expert Tip: By including a couple of “real” records on the prototype,
\ it is often easier to get a better idea of how the report will really look.
LN

Note: The Musical Items List will be prototyped in an exercise at the end
of the day. There will also be an exercise asking you to create this report.

Complex Reports

Inaddition to the three list reports that will be added to the application, a fourth report
will also be added. This report will be much more complex. The complexity of the
report will make it much more useful.

669

670

Reporting

) 9.9.9.9.90.9.0,0.9.9.0.0.0.9.9.9.9.9.0.0,.9,.0.9.0.0.9.9.9.0

Group:

Group Desc:

XXX KXXXXXKXXXXKXKKXXXXXXX

Today: 99/99/99

0 9.9.9,0,0,:9.9,9,9,9.0.9.9.9.9,0.0.9.9.9.0.0.9.9.9.9.9.0.0,9.9,.9,0.0.9.9.9.9.9.0:0.9.9.9.0.0.99.9.9.0,0.0.99.9.0 04

1 5%,.9.9.9.0.0.9.9.0.9.9.9.9.9,9.9.9.9,.0,0.9.0.0,:0.9.9.9.0,.0.0.0,0.0.0.0.0.0.0.0.0.0.0.0.0.000.0999999¢994
1000 0.0.0.0.0.0.0.0.0.0.0.0.00.0.0.0.0.90099000000.0000000000000000090009900.04

Type of Music: XXXXXXXXXXXXXXXXXXXX

Medium:

19.9.9,0,0.0.9,9.9.9,:0.9.9.9.9.9.0.9.9.9,0:0.9.9.9.0.9,:0:9.9,0,0,0.04

Date Purchased: 99/99/99

Cost:
Value:

SONGS:

Track
99
99
99
99
99
99
99
99
99
99
99
99
99

$999.99
$999.99

Song Title

VOO090 0000909000 0.0.99.00 000009000 00.09.900094
V0999000009090 000.0.99.00.000.9.0.9.90000.09.900004
V0999000009090 00 0.0.00.09000.0.9.0.99000.9.09.990004
VOO090 0000909000 0.0.99.00 000009000 00.09.900094
V0999000009090 000.0.9900.000.9.0.9.9000.9.09.900004
V9999000009090 00 0.0.00.0000.0.9.0.9.9000.9.09.990004
VOO090 0000909000 0.0.99.00 000009000 00.09.900094
V0099000009090 000.0.90.00.000.9.0.9.90009.09.900004
V0999000009090 00 0.0.00.0000.0.9.0.9.9000.9.09.990004
VOO090 0000909000 0.0.99.00 000009000 00.09.900094
V0099000009090 00 0.0.9900.000.9.0.990009.09.900004
V0999000009090 00 0.0.00.0900.0.9.0.9.9000.9.09.990004
VOO090 0000909000 0.0.99.00 000009000 00.09.900094

Walking on the Moon

Group:

Group Desc:

Philippe Kahn

several famous people

Type of Music: Jazz

Time

99
99
99
99
99
99
99
99
99
99
99
99
99

:99
:99
:99
:99
:99
:99
:99
:99
:99
:99
:99
:99
:99

Today: 99/99/99

Jazz Music by the Owner of Borland International. Features

Medium: Compact Disc
Date Purchased: 12/13/92

Cost: $ 14.95
Value: $342.00

SONGS:

Track Song Title Time
01 OOPs! 05:06
02 Interlude 00:00
03 Walkin” on the Moon 07:28
04 Interlude 00:00
05 Epistrophy 04:35
06 Interlude 00:00
07 S, Eand L 04:10
08 All’s Well That Ends 08:12
09 Interlude 00:00
10 This Masquerade 05:48
11 Interlude 00:00
12 Ralph’s Piano Waltz 05:45
13 Interlude 00:00
14 Calor 08:07
15 Interlude 00:00
16 Better Days 03:49
17 Interlude 00:00
18 Mopti 05:46
19 Interlude 00:00
20 Silence 05:52

As you can see, this report is formatted differently from that of the previous lists. In
addition, this report contains information from not only the Musical Items file, but
also the Group file and the Medium Code file. The formatting of this report has been
changed so that only one musical item will be printed per page. The complexity of this
report will require a slightly different approach to produce than the lists.

If you printed this layout for every record that could possibly be in your database, you
could use a great deal of paper. Because of this, you will want to add selection criteria.
Later today, you will add an option that will allow this report to be printed for either
all of the records in the file or for only a single musical item.

There are some other issues involved with this report that were not present in the
previously prototyped lists. What do you do if you print a musical item that does not
have a corresponding medium code or group? In these cases, you may be missing some
information that is expected based on the prototype. This is a situation that should
be addressed at the time you do the prototypes. In the case of the Musical Itemsreport,

671

672

Reporting

you will print unknown in the medium code description, and you will leave the group
information blank. In addition, if you don’t print the group information, you should
suppress the blank lines from the report. Sound complicated? Later today, you will see
the code necessary to complete this report.

Expert Tip: Because of the complexity of the Musical Items Informa-
tion report, you may want to create a specification. The specification

4 would contain information such as the selection criteria and what to

do if some of the data is missing.

Creating the Reports

Before creating the reports, you will first need to set up the main application to receive
them. Based on what was presented earlier, you should have an idea of what will need
to be added to the Record of Records! application. There already was a reporting menu
option included in the Main menu. Because you know what reports need to be added,
you should be able to include a reporting menu. A menu should be created to contain
the following options:

1. Detailed Information
2. List of Musical Items
3. List of Groups

4. List of Medium Codes

These options are listed in the order that they are most likely to be used. The users of
the application are expected to use the Detailed Information Report (on Musical
Items) the most. They are expected to use the List of Medium Codes the least. Listing
19.1 is the code necessary to create this menu.

As stated earlier, the Detailed Report will have an option. The users will be able to
print all of the musical items, or they will be able to select a specific musical item to
print. To provide your users with this option, a third menu will be included accessible
from the Detailed Information option. This menu will contain two reporting options,
All Items and One Item. Additionally, it will contain a Return option, which will
remove the menu. The code for this menu is also included in Listing 19.1.

Type

Listing 19.1. REC_RPTG.C. The reporting menu code.

©CoO~NOUTA WNLPEP

WWWONNNNNNNNNNRERRRRRRRRP R
ONPRPOOONNONERWONROOONOONDWNERO & &

W W ww
0 ~N O O

e o
NOoO O~ WNREO

W
N

w
©

/*
* Filename: REC_RPTG.c
* RECORD OF RECORDS - Version 1.0

*

* Author: Bradley L. Jones
* Gregory L. Guntle

*

* Purpose: The Reporting menus.
*

* Note: Assumes 80 columns by 25 columns for screen.

* */
#include <string.h>

#include <stdio.h>

#include <ctype.h>

#include ““tyac.h”

#include “‘records.h”

Y *
* prototypes *
* */

#include “recofrec.h”

int do_detail_album_menu(void);

/* *
main() *
* */

int do_reporting(void)
{
int rv =0;
int cont = TRUE;
int menu_sel = 0;
char *saved_screen = NULL;

char *rpt_menu[10] = {
“1. Detailed Information”, “1Dd”,
“2. List of Musical ltem”, “2Mm”,
“3. List of Groups “, “36g”,
“4_. List of Medium Codes”, “4Mm”,
“5_. Return to Main Menu ““, “5RrEeQq” };

char MENU_EXIT_KEYS[MAX_KEYS] = {F3, F10, ESC_KEY};

while(cont == TRUE) /* loop in temp menu */
{

continues

673

674

Reporting

Listing 19.1. continued

48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:

//

//

//

saved_screen = save_screen_area(10, 21, 28, 58);

rv = display_menu(12, 30, DOUBLE_BOX, rpt_menu, 10,
MENU_EXIT_KEYS, &menu_sel, NO_LR_ARROW,

switch(rv)

{

SHADOW) ;

case ENTER_KEY: /* accept selection */

case CR:
switch(
{

case

case

case

case

case

menu_sel)

1: /* Menu opti
cursor_on();
do_detail_al
break;

2: /* Menu opti
cursor_on();

on 1l */

bum_menuQ);

on 2 */

list_musical_items();
display_msg_box(“Report 2...7,
ct_help_fcol, ct.help_bcol);

break;

3: /* Menu opti
cursor_on(Q);

on 3 */

list_groups(Q);
display_msg_box(“Report 3...",
ct_help_fcol, ct_help_bcol);

break;

4: /* Reporting */

cursor_on();

list_medium_codes();
display_msg_box(“Report 4...7,
ct_help_fcol, ct_help_bcol);

break;

5: /* exit */

cont = FALSE;

break;

default: /* continue

}

break;

case ESC_KEY:

boop(Q);
break;

rv = ENTER_KEY;

looping */

/* don’t exit

totally */

97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119: }
120:
121: /*
122: *
123: *
124:
125: in
126: {
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:

cont = FALSE; /* exit */

break;

case F3: /* exiting */
cont = FALSE;
break;

case F10: /* action bar */

rv = do_main_actionbar();

ifC rv == F3)
cont = FALSE;

break;

default: boop();
break;

}
¥

restore_screen_area(saved_screen);
return(rv);

Detailed Musical ltem Report *

t do_detail_album_menu(void)

int rv 0;

int cont TRUE;

int menu_sel = 0;

char *saved_screen = NULL;

char *album_menu[6] = {
“1. All ltems”, “lAa”,
“2. One ltem “, “2007,
“3. Return “, “3RrEeQq” }%};

char MENU_EXIT_KEYS[MAX_KEYS] = {F3, F10, ESC_KEY};

while(cont == TRUE) /* loop in temp menu */
{

saved_screen = save_screen_area(13, 19, 35, 55);

rv = display_menu(14, 40, DOUBLE_BOX, album_menu, 6,
MENU_EXIT_KEYS, &menu_sel, NO_LR_ARROW,
SHADOW) ;

continues

675

676

Reporting

Listing 19.1. continued

147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:

//

//

switch(rv)

{

case ENTER_KEY: /* accept selection */

case CR:

switch(menu_sel)

{

case 1: /* Menu option 1 */

cursor_on();
music_rpt(0);

display_msg_box(“Do AlIl of em....",
ct_help_fcol, ct_help_bcol);
break;

case 2: /* Menu option 2 */

cursor_on();
music_rpt(1);

display_msg_box(“Do only one...”,
ct_help_fcol, ct.help_bcol);
break;

case 3: /* Exit menu */

cont = FALSE;
break;

default: /* continue looping */

}

break;

case ESC_KEY:

case F3:

case F10:

default:

boop();
break;

rv = ENTER_KEY; /* so don’t exit clear out */
cont = FALSE; /* exit */
break;

/* exiting */
cont = FALSE;
break;

/* action bar */
rv = do_main_actionbar();

ifC rv == F3)
cont = FALSE;

break;

boop();
break;

196: }

197: }

198: restore_screen_area(saved_screen);

199:

200: return(rv);

201: }

202:

203: /* *
204: * end of listing *
205: * */

O

1. Detailed Information|

TECORD of RECORDS?

ii. Detailed Information
ii. All Items

Anal 5 In order for the Record of Records! application to access these new menus, you will
W also need to make some changes to RECOFREC.C and RECOFREC.H. The
following prototypes should be added to RECOFREC.H.

/* ______________________________ *
* Prototypes for Reporting *
K e */

int do_reporting(void);

677

678

Reporting

void list_medium_codes(void);
void list_groups(void);
void list_musical_items(void);
void music_rpt(int);
void setup_today(void); /* in listmed.c */
The changes to RECOFREC.C involve changing case 4 in the main) function to the
following:
case 4: /* Reporting */

do_reporting(Q;

break;
Once you have changed these files, you can recompile. Listing 19.1 has been set up
sothat commentsare printed when the reporting options are selected. You can see this
in lines 68, 75, 82, 157, and 164. The actual reports will each be created in its own
source file. The call to the functions are included in both Listing 19.1 and the
RECOFREC.H file if you made all the changes mentioned. As you create the reports,
you will be able to remove the comments from the call and delete the message.

Therest of this listing should not need explanation. The Reporting menu operates like
the other menus you have seen. You should notice that this menu was called by the
Main menu. In addition, option one in lines 60 to 63 calls a third menu. From the
output, you can see that the menus do not completely cover each other. This helps the
users see where they are in the menus.

Expert Tip: When presenting more than one menu on the screen at
\ the same time, you should avoid completely covering a lower menu.
A This helps the users see where they are.

Creating the List of Medium Codes

The list of medium codes will be created in a function called 1ist_medium_codes(),
which will be created in a file called LISTMED.C. This is presented in Listing 19.2.

Type Listing 19.2. LISTMED.C. The list of medium codes.

1: /*

2: * Filename: listmed.c

3: *

4: * Author: Bradley L. Jones
5: * Gregory L. Guntle

0 ~N O

©

10:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
A47:
48:
49:
50:
51:
52:
53:
54:
55:

ok X %

Purpose: Lists the information in the medium DB.

#include <stdio.h>

#include <string.h>

#include *““tyac.h”

#include “records.h”

/* ____________________ *

* Global Variables =*
K */

extern FILE *idx_fp; /* Main File ptr to data file */

extern FILE *db_fp; /* Data file */

extern nbr_records; /* Total # of rec for mediums */

extern int start_rec;

extern int disp_rec;

/* __________________ *

* Defined constants*
A e e e */

#define MEDIUM_IDX “MEDIUMS.I1DX”

#define MEDIUM_DBF “MEDIUMS.DBF”

/* ________________________ *

* structure declarations *
x */
extern MEDIUM_REC medium;

/* ____________________ *

* Prototypes *
* */

#include “‘recofrec.h”

void setup_today(void);

void print_med_hdr(void);

int process_med_list(void);

char today[8];

/* *
* list_medium_codes() *
* */

int list_medium_codes(void)

*/

continues

679

680

Reporting

Listing 19.2. continued

56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:

{

}
/

Vv

{

/

int rv=NO_ERROR;

/* Open both Index and DBF file */

it ((rv = open_files(MEDIUM_IDX, MEDIUM_DBF)) == 0)

{
/* Are there any records to process ? */
if (nbr_records == 0)
{
display_msg_box(“No medium records to process”,
ct.err_fcol, ct.err_bcol);
}
else
{
setup_today();
print_med_hdr(Q);
rv = process_med_list();
} /* End ELSE - records to process */
rv = close_files();
3} /* End No Errors on Opening Files */

return(rv);

.

* setup_today()

*

oid setup_today()

int year, month, day;
char hold_date[6];

current_date(&month, &day, &year);
convert_str(hold_date, month, PACK_ZERO);
strncpy(today, hold_date+3, 2);
today[2] = “/7;
convert_str(hold_date, day, PACK_ZERO);
strncpy(today+3, hold_date+3, 2);
today[5] = “/7;
if (year >1900)

year-=1900;
convert_str(hold_date, year, PACK_ZERO);
strncpy(today+6, hold_date+3, 2);
today[8] = “\0~;

*

*/

104: * print_med_hdr() *
105: = */
106: void print_med_hdr()

107: {

108: fprintf(stdprn,”\n\r\t\tList of Medium Codes\n\r”);

109: fprintf(stdprn,”\t\t %s\n\r\n\r”’, today);

110:

111: fprintf(stdprn,”\tCode\tDescription\n\r’);

112: fprintf(stdprn, ”\t----\t--———————- \n\r’);

113: }

114:

115: /* *
116: * process_med_list() *
117: = */
118: int process_med_list()

119: {

120: int rv = NO_ERROR;

121: int done = FALSE;

122: int srch_rec = start_rec;

123: MEDIUM_INDEX temp;

124:

125: while (rv == NO_ERROR && !done)

126: {

127: /* Get INDEX */

128: rv = get_rec(srch_rec, idx_fp, sizeof(temp),
129: sizeof(int)*2, (char *)&temp);

130: if (rv == NO_ERROR)

131: {

132: /* Get the data record */

133: rv = get_rec(temp.data, db_fp, sizeof(medium),
134: 0, (char *)&medium);

135: if (rv == NO_ERROR)

136: {

137: /* Print the data */

138: fprintf(stdprn, “\t%-2s\t%-35s\n\r”’,
139: medium.code, medium.desc);

140: srch_rec = temp.next;

141: /* Check for end of list */

142: if (srch_rec == 0)

143: {

144: done = TRUE;

145: fprintf(stdprn, “\f’);

146: }

147: 3} /* End of NO_ERROR - from DBF */
148: } /* End of NO_ERROR - from INDEX */
149: } /* End WHILE */

150: return(rv);

151: }

681

682

Reporting

Note: The current_date() function was taken from Listing 8.2 in Day 8.
This function should be added to your TYAC.H library if it isn’t already

there.
List of Medium Codes
Oumut 02/20/94
Code Description
cd Compact Disc
cs Cassette Tape

Note: Your output will look like the prototype. The specific data printed
will be dependent upon the data in your files.

Ana|y5|3 This listing starts in the same manner as most of the listings in the Record of

Records! application. In lines 1 to 9, comments are included giving information

on the listing. In lines 11 to 14, the necessary header files are included. The
TYAC.H header is included so that your library routines are available. The
RECORDS.H header is included for the record layouts that will be needed to hold
the medium information. Lines 19 to 23 include the external declarations that you
should be very familiar with by now. These are the declarations that are needed to
access the databases.

Lines 30 and 31 create the same defined constants that you saw in the Medium Code
listing for the entry and edit screen. These constants, MEDIUM_1DX and MEDIUM_DBF,
contain the name of the medium code index file and data file. Line 37 contains an
external declaration for a medium code structure. Lines 43 to 47 contain prototypes
for the functions included later in the listing.

Expert Tip: The defined constants for the Medium Code files are
included in more than one file. Because of this, it would be better to

A place the constants in a header file. This header file could then be

included where needed. In addition, if the file names defined in the
constants change, then only one area of the code needs to be modified
instead of several.

The first line of unfamiliar code should be line 49. A character array called today is
declared in line 49. This global array will be used to hold the current date.

Line 55 begins the 1ist_medium_code () function, which is the purpose of this listing.
Before printing the report, you need to open the file. Line 60 calls the open_file()
function to open the medium code files. If there wasn’t an error, then line 63 checks
the global variable, nbr_records, that was filled when the file was opened. If there
aren’tany records in thefile, then amessage is displayed in line 65; otherwise the report
is processed. Line 70 calls a function to set up the current date, line 71 prints the first
header on the report, and then line 72 processes the detailed information. Once the
processing is done, or if there weren’t any records, the files are then closed (line 75).
Line 77 ends the function by returning the value in rv.

Setting up the current date occurs in lines 80 to 101 in the setup_today() function.
The current_date() function, which was presented on Day 8, is used to get the
current month, day, and year.

One other function is used that has not been covered. This is the convert_strQ)
function. This function is used to modify a number into a string. The code for this
function is presented in Listing 19.3.

Lines 103 to 113 contain the function, print_med_hdr(). It isa common practice to
create a function that prints only the header to a report. This function can then be
called whenever needed by the function that prints the detailed information. Lines
108 to 112 contain several fprintf() statements that display information to stdprn.

Review Tip: The fprintf() function is just like printf() except that
it has an additional parameter. The first parameter of fprintf() isa
A pointer to where you want the printed information to go. This can be
a file such as the medium file or one of the standard 1/O streams. The
most common standard /O streams are stdout, stdprn, and stderr.
The stdout stream is for standard output. This is almost always the
screen. The stdprn stream is for standard print. This is almost always
a printer. The stderr stream is for standard errors. This is also almost
always the screen.

The processing of the detail information in the report starts on line 118 with the
process_med_list() function. Awhite loop in lines 125 to 149 will execute as long
as all the records are not processed and as long as no errors occur.

19

683

684

Reporting

Line 128 will read an index record from the index file. Thiswill initially be the starting
record. If the read is successful, then the corresponding data record will be read in line
133. If this read is successful, then line 138 prints the detail line containing the
medium code and description. Line 140 sets the srch_rec to the next sorted record
in the index file by using the next pointer. If the next index record to be read is zero,
then the end of the file has been reached. In this case, line 144 sets the done flag to TRUE
so that the printing loop will end. Additionally, line 145 does a form feed on the
report.

Note: This report does not take page size into consideration. It assumes
that the number of records that will be printed will not go over one page.
In the next listing, this assumption is not made.

The convert_str() function was used in Listing 19.2. This function is presented in
Listing 19.3. You should add this function to your TYAC.LIB library.

Type Listing 19.3. The convert_str() function.

1: [
2: * Program: CONVSTR.C

3: * Authors: Bradley L. Jones

4: * Gregory L. Guntle

5: *

6: * Purpose: Converts an integer variable to a string

7: *

8: * Enter with: rec_disp - char * to place new string

9: * rec_nbr - integer to convert

10: * flag - Whether to front-end it with 0’s
11: *

12: * Returns: N/A

13: * */
14:

15: #include <stdlib_.h> /* Required by itoa */

16: #include <string.h>

17: #include <mem.h>

18:

19: #define PACK_ZERO 1

20: #define NOPACK 0

21

22: void convert_str(char *disp_buff, int nbr, int pack flag)
23: {

24: char hold_convert[18]; /* Required by itoa */
25:

26: /* Null out area to store new string */

27: memset(disp_buff, “\0’, sizeof(disp_buff));

28:

29: /* Convert integer to string */

30: itoa(nbr, hold_convert, 10);

31:

32: /* Should the nbr be front-packed with 0’s */

33: if (pack_flag == PACK_ZERO) /* Front pack # with 0’s ? */
34: {

35: memset(disp_buff, <07, 5-strlen(hold_convert));
36: disp_buff[5-strlen(hold_convert)] = “\07;

37: }

38:

39: /* Place convert number in passed parm */

40: strcat(disp_buff, hold_convert);

41:

42: }

Anal 5 This function simply converts an integer to a string. Using a defined constant,
W the string may or may not be packed with zeros. These defined constants,
PACK_zERO and NorAck, should already be in your TYAC.H header file.

Creating the List of Group Codes

The List of Groups is similar to the List of Medium Codes. The r1ist_groups()
function is presented in the RPT_GRPS.C file. This is presented in Listing 19.4.

ﬂ% Listing 19.4. RPT_GRPS.C. The List of Groups.
1: /*

2: * Filename: listgrps.c

3: *

4: * Author: Bradley L. Jones

5: * Gregory L. Guntle

6: *

7: * Purpose: Lists the information in the groups DB.

8: *

9: * >/
10:

11: #include <stdio.h>
12: #include <string.h>
13: #include “tyac.h”
14: #include “records.h”

15:

16: /*————— *
17: * Global Variables *
18 * e */

continues

19

685

686

Reporting

Listing 19.4. continued

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
A47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:

extern FILE *idx_fp; /*
extern FILE *db_fp; /*
extern nbr_records; /*
extern int start_rec;
extern int disp_rec;

int line_ctr; /*
int page_ctr; /*

“GROUPS
“GROUPS

#define GROUPS_1DX
#define GROUPS_DBF

* Prototypes *
#include “recofrec.h”

int list_groups(void);
void print_grp_hdr(void);
int process_groups(void);
void print_group(void);

void setup_date(void);
extern char today[8];

Main File ptr to data file */
Data file */
Total # of rec for mediums */

Line ctr */
Page ctr */

-1DX”
-.DBF”

/*
* list_groups(Q

*

*/

int list_groups(void)

{
int rv=NO_ERROR;

/* Open both Index and DBF

file */

if ((rv = open_files(GROUPS_IDX, GROUPS_DBF)) == 0)

{

/* Are there any records to process ? */

if (nbr_records == 0)

{

display_msg_box(“No groups records to process”,
ct.err_fcol, ct.err_bcol);

68: 1

69: else

70: {

71: setup_today();

72: print_grp_hdr(Q;

73: rv = process_groups();

74: 3} /* End ELSE - records to process */
75:

76: rv = close_files();

77: } /* End No Errors on Opening Files */
78: return(rv);

79: %}

80:

81: /* *
82: * print_grp_hdrQ) *
83: * */
84: void print_grp_hdrQ

85: {

86: fprintf(stdprn,”\n\r\t\tList of Groups\n\r”);

87: fprintf(stdprn,”\t\t %s\n\r\n\r”, today);

88:

89: fprintf(stdprn,” Date\n\r”);
90: fprintf(stdprn,”Group “);

91: fprintf(stdprn,”Formed Type of Music\n\r>);

92:

93: fprintf(stdprn,”-—-—-—————————— - “);

94: fprintf(stdprn,”----———— \n\r’’);

95: }

96:

97: /* *
98: * process_groups() *
99: * */
100: int process_groups()

101: {

102: int rv = NO_ERROR;
103: static int done = FALSE;

104: static int srch_rec;

105: static GROUP_INDEX temp;

106:

107: line_ctr = 0;

108: page_ctr = 1;

109:

110: srch_rec = start_rec;

111: while (rv == NO_ERROR && !done)

112: {

113: /* Get INDEX */

114: rv = get_rec(srch_rec, idx_fp, sizeof(temp),
115: sizeof(int)*2, (char *)&temp);
116: if (rv == NO_ERROR)

117: {

continues

687

Reporting

Listing 19.4. continued

118: /* Get the data record */

119: rv = get_rec(temp.data, db_fp, sizeof(groups),

120: 0, (char *)&groups);

121: if (rv == NO_ERROR)

122: {

123: print_group();

124: srch_rec = temp.next;

125: /* Check for end of list */

126: if (srch_rec == 0)

127: {

128: done = TRUE;

129: fprintf(stdprn, “\f”’);

130: }

131: else

132: done = FALSE;

133: } /* End of NO_ERROR - from DBF */

134: } /* End of NO_ERROR - from INDEX */

135: } /* End WHILE */

136: return(rv);

137: }

138:

139: /= *
140: * print_group(Q *
141: = */
142: void print_group(Q

143: {

144: int i;
145: char hold_date[8];

146:

147: if (line_ctr+9 > 55)

148: {

149: fprintf(stdprn,”\f”); /* New page */
150: print_grp_hdr(); /* Reprint header */
151: fprintf(stdprn,”%-25s”,groups.group);
152: fprintf(stdprn,” %-8s %-20s\n\r”’,
153: hold_date, groups.music_type);
154: line_ctr = 6;

155: page_ctr++;

156: }

157: else

158: line_ctr+=9;

159:

160: /* Build the date first */

161: strncpy(hold_date, groups.date_formed.month, 2);
162: hold_date[2] = “/”;

163: strncpy(hold_date+3, groups.date_formed.day, 2);
164: hold_date[5] = “/”;

165: strncpy(hold_date+6, groups.date_formed.year, 2);

688

166: hold_date[8] ="\0";

167:
168: fprintf(stdprn,”%-25s”,groups.group);
169: fprintf(stdprn,” %-8s %-20s\n\r”’,
170: hold_date, groups.music_type);
171:
172: fprintf(stdprn,”\n\r\t\t Members: %-30s\n\r”,
173: groups.member[0]);
174:
175: for (i=1; i<=5; i++)
176: {
177: fprintf(stdprn,”\t\t %-30s\n\r”’,
178: groups.member[i]);
179: }
180:
181: fprintf(stdprn,”\n\r”);
182: }
List of Groups
Outpu 02720754
Date
Group Formed Type of Music
Violent Femmes 01/01/87 Alternative

Members: Gordon Gano
Brian Ritchie
Victor DelLorenzo

Yanni 09/11/93 Instrumental

Members: Yanni
two
three
four
five
Six

Note: Your output will look like the prototype. The specific data printed
will be dependent upon the data in your files.

689

690

Reporting

Ana|yS|S This listing should look similar to the Listing 19.2. Because these two listings are

so similar, only the differences need an explanation. You should have expected
some of the differences. For example, lines 31 and 32 contain defined constants
for the group file names instead of the medium files.

The main function, rist_groupsQ), in lines 52 to 79 is almost identical to the
list_medium_codes() function presented earlier. The only difference is that functions
related to groups, instead of medium codes, are called.

The List of Groups header information is different from that used by the List of
Medium Codes report. Lines 81 to 95 contain the print_grp_header() function.
This function simply prints several lines of information exactly as it was presented in
the prototype.

Processing the group records is also very similar to processing the medium code
records. There are two main differences. The first is that the detail information is
printed in aseparate function called print_group(). Theinformation printed for each
group is much more complex than what was printed for the medium code. To help
keep the code easy to follow, the printing of the detail information was placed in its
own function.

The second difference isthat the report will perform page breaks. In lines 107 and 108,
two additional variables have are used, 1ine_ctr and page_ctr. In line 147, an if
statement checks to see if there is room on the page to print another record. If there
is not, then line 149 does a form feed using fprintf(). Line 150 then calls
print_grp_hdr() to print the header information on the new page. The tine_ctr is
then reset to six in line 154, and the page counter is incremented by one in line 155.

If there was enough room to print the header, then line 158 increments the line
counter by nine. This is the number of lines that are printed for an individual group.
With the header check completed, the detail information is formatted and printed.
The report cycles through each record until all the records have been printed.

Note: The 1ine_ctr Was set to six instead of zero because of the header
information that was printed.

\ Note: Most reports contain from 55 to 60 lines on a page.

Creating the Detailed Information
Report

The Detailed Information Report will differ from the list reports in several ways. The
main difference will be that the Detailed Information Report will use all three
databases instead of just one. Listing 19.5 presents the Detailed Information Report.

Listing 19.5. RPT_DETL.C. The detailed Musical Item

TVpe| Report.

1: /*
2: * Filename: listdalb.c
3: *
4: * Author: Bradley L. Jones
5: * Gregory L. Guntle
6: *
7: * Purpose: Lists detailed information from the Albums area.
8: *
9: * Returns: O = No Errors
10: * <0 = No records in DB
11: * >0 = File 1/0 Error
12: *
13: * */
14:
15: #include <stdio.h>
16: #include <string.h>
17: #include “tyac.h”
18: #include “records.h”
19:
20: /F———m - *
21: * Global Variables *
22: e - */
23:
24: extern FILE *idx_fp; /* Main File ptr to data file */
25: extern FILE *db_fp; /* Data file */
26: extern FILE *song_fp; /* Pointer for songs */
27: extern nbr_records; /* Total # of rec for albums */
28: extern int start_rec;
29: extern int disp_rec;
30:
31: extern ALBUM_REC albums;
32: extern SONG_REC songs[7];
33: extern MEDIUM_REC medium;
34: extern GROUP_REC groups;
35:
36: FILE *alb_idx_fp; /* Needed when opening multiple DB */
37: FILE *alb_db_fp;
continues

691

692

Reporting

Listing 19.5. continued

38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:

FILE *al
FILE *me
FILE *me
FILE *gr|
FILE *gr

b_songs_fp;
d_idx_fFp;
d_db_fp;
p_idx_Fp;
p_db_fp;

int alb_nbr_recs;
int alb_start _rec;

int grp_nbr_recs;

int grp_start_rec;

int med_nbr_recs;
int med_start_rec;
int med_fnd;
int grp_fnd;

/* __________________ *

* Defined constants*

A e */
#define ALBUMS_DBF “ALBUMS .DBF”’
#define ALBUMS_IDX “ALBUMS. 1DX”’
#define SONGS_DBF “SONGS.DBF””
#define GROUPS_IDX “GROUPS. I1DX”
#define GROUPS_DBF “GROUPS .DBF”
#define MEDIUM_IDX “MEDIUMS. IDX”
#define MEDIUM_DBF “MEDIUMS .DBF”
#define ALBUMS 00
#define GROUPS 01
#define MEDIUM 02
#define TO_GLOBAL 00
#define FROM_GLOBAL 01
/* ________________________ *

GROUP_IN
GROUP_RE
MEDIUM_I
MEDIUM_R
ALBUM_IN
ALBUM_RE
SONG_REC

DEX grp_idx;

C grp_dbf;

NDEX med_idx;

EC med_dbf;

DEX alb_idx;

C alb_dbf;
alb_songs[7];

R *

88: * Prototypes *
89: e */
90:

91: #include “recofrec.h”
92:

93: int open_all_files(void);

94: void print_song_hdr(void);

95: int process_details(char *);
96: void print_album_details(void);
97: void switch_globals(int, int);
98:

99: void setup_date(void);

100: extern char today[8];

101:

102: int get_info(void);

103:

104: /* *
105: * list_albums(Q) *
106: * */
107:

108: int music_rpt(char *title)

109: {

110: int rv=NO_ERROR;

111:

112: setup_today();
113: rv = open_all_files();

114:

115: if (rv == NO_ERROR)

116: {

117: rv = process_details(title);

118:

119: /* Closing ALBUMS */

120: switch_globals(ALBUMS, TO_GLOBAL);
121: rv = close_files();

122:

123: /* Closing GROUPS */

124: switch_globals(GROUPS, TO_GLOBAL);
125: rv = close_files();

126:

127: /* Closing MEDIUM */

128: switch_globals(MEDIUM, TO_GLOBAL);
129: rv = close_files();

130:

131: }

132: else

133: if (rv < 0)

134: {

135: display_msg_box(“No albums records to process”,
136: ct.err_fcol, ct.err_bcol);

continues

693

694

Reporting

Listing 19.5. continued

137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:

}
/

*

*

*

}

return(rv);

ope

n_all_filesQ *

*/

int open_all_files()

{

int rv = NO_ERROR;

/* Open ALBUMS Index and DBF file */
if ((rv = open_files(ALBUMS_IDX, ALBUMS_DBF)) == 0)

{

}

/* Are there any records to process ? */
if (nbr_records == 0)

e

{

}

Ise
sw
if
{
¥

itch_globals(ALBUMS, FROM_GLOBAL);
((alb_songs_fp = fopen(SONGS_DBF, “r+b”)) == NULL)

rv = READ_ERROR;

if (rv == NO_ERROR)

{

}

/*
if
{

}

Now Open GROUPS Index and DBF file */
((rv = open_Tiles(GROUPS_IDX, GROUPS_DBF)) == 0)

switch_globals(GROUPS, FROM_GLOBAL);

if (rv == NO_ERROR)

{

}

/*
it
{

}

Open MEDIUM Index and DBF file */
((rv = open_Tfiles(MEDIUM_IDX, MEDIUM_DBF)) == 0)

switch_globals(MEDIUM, FROM_GLOBAL);

186:

187: return(rv);

188: }

189:

190: /* *
191: =* print_song_hdr(Q) *
192: =* */
193: void print_song_hdrQ

194: {

195: fprintf(stdprn,”SONGS:\n\r\n\r”);

196: fprintf(stdprn,”Track Song Title”);

197: fprintf(stdprn,” Time\n\r”);
198: fprintf(stdprn,”---- “Y;

199: fprintf(stdprn,”-—-—-—-———— -~ ”)s;
200: fprintf(stdprn,” —-—==\n\r);

201: }

202:

203: /* *
204: * process_details() *
205: * */
206: int process_details(char *title)

207: {

208: static int rv = NO_ERROR;
209: static int done = FALSE;

210: static int srch_rec;

211:

212: if(strlen(title) == 0) /* Do all of them */
213: {

214: /* Albums Idx will drive report */

215: srch_rec = alb_start_rec;

216:

217: while (rv == NO_ERROR && !done)

218: {

219: /* GET ALBUM INFORMATION */

220: rv = get_rec(srch_rec, alb_idx_fp, sizeof(alb_idx),
221: sizeof(int)*2, (char *)&alb_idx);

222:

223: if (rv == NO_ERROR)

224: {

225: /* Get the Albums data record */

226: rv = get_rec(alb_idx.data, alb_db_fp, sizeof(alb_dbf),
227: 0, (char *)&alb_dbf);

228:

229: if (rv == NO_ERROR)

230: {

231: rv = get_info();

232: if (rv == NO_ERROR)

233: {

234: srch_rec = alb_idx.next;

235: print_album_details(Q);

continues

695

Reporting

Listing 19.5. continued

236: /* Check for end of list */

237: if (srch_rec == 0)

238: {

239: done = TRUE;

240: }

241: } /* End of NO_ERROR - from DBF */

242: }

243: } /* End of NO_ERROR - from INDEX */

244: } /* End WHILE */

245: }

246: else /* Do search for specific record */

247: {

248: switch_globals(ALBUMS, TO_GLOBAL);

249:

250: rv = search_alb_rec(title);

251:

252: if (rv <=0) /* No error or Did not find rec */

253: {

254: if (rv == NO_ERROR) /* Found it */

255: {

256: /* Transfer into working area */

257: memcpy(&alb_dbf, &albums, sizeof(albums));

258:

259: rv = get_info(Q);

260:

261: if (rv == NO_ERROR)

262: {

263: print_album_details();

264: }

265: }

266: else /* Must not have found rec */

267: {

268: rv = 0; /* Reset - not really an error */

269: fprintf(stdprn,”Title: %s not found!\f”,

270: title);

271: }

272: }

273: }

274: return(rv);

275: }

276:

277: /*

278: *

279: *

280: * Loads all the relevant information from the other

281: * files.
*
n

get_infoQ)

ok % X X

282:
283: int get_info(Q)
284: {

696

285: int rv = NO_ERROR;

286:

287: /* Get Songs */

288: rv = get_rec(alb_idx.song, alb_songs_fp,

289: sizeof(alb_songs), O,

290: (char *)&alb_songs);

291:

292: if (rv == NO_ERROR)

293: {

294: /* Search for GROUP information */

295: switch_globals(GROUPS, TO_GLOBAL);

296:

297: rv = search_grp_rec(alb_dbf._group);

298:

299: if (rv <=0) /* No error or Did not find rec */
300: {

301: if (rv == NO_ERROR)

302: {

303: /* Transfer into working area */

304: memcpy(&grp_dbf, &groups, sizeof(groups));
305: grp_fnd = TRUE;

306: }

307: else /* Must not have found rec */

308: {

309: grp_fnd = FALSE; /* Set flag */

310: rv = NO_ERROR; /* Reset - not really an error */
311: }

312: }

313:

314: /* Search for MEDIUM information */

315: switch_globals(MEDIUM, TO_GLOBAL);

316: rv = search_med_rec(alb_dbf_.medium_code);

317:

318: if (rv <=0) /* No error or Did not find rec */
319: {

320: if (rv == NO_ERROR)

321: {

322: /* Transfer into working area */

323: memcpy (&med_dbf, &medium, sizeof(medium));
324: med_fnd = TRUE;

325: }

326: else /* Must not have found rec */

327: {

328: med_fnd = FALSE; /* Set flag */

329: rv = NO_ERROR; /* Reset - not really an error */
330: }

331: }

332: }

333: return(rv);

334: }

continues

697

698

Reporting

Listing 19.5. continued

335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:
349:
350:
351:
352:
353:
354:
355:
356:
357:
358:
359:
360:
361:
362:
363:
364:
365:
366:
367:
368:
369:
370:
371:
372:
373:
374:
375:
376:
377:
378:
379:
380:
381:
382:
383:

/*

* print_album_detailsQ

*

void print_album_details()

{
int i;
char hold_items[8];

/* __ */
/* Display ALBUM TITLE */
fprintf(stdprn,”%-30s”,alb_dbf._title);
fprintf(stdprn, "\ t\t\t\t\t%8s\n\r\n\r”’, today);

/* __ */
/* Display GROUP-related Information */
fprintf(stdprn,”Group: %-25s\n\r\n\r”’,

alb_dbf._group);
fprintf(stdprn,”Group Desc: “);
if (grp_fnd)
fprintf(stdprn,”%-60s\n\r”,grp_dbf.info[0]);
for (i = 1; i<3; i++)
fprintf(stdprn,” %-60s\n\r’’,
grp_dbf.info[i]);
3
fprintf(stdprn,”\n\r”);
3
else
fprintf(stdprn, “Unknown\n\r\n\r\n\r\n\r>);
}
/-k __ */

/* Display Types of Music */
fprintf(stdprn, “Type of Music: “);
if (grp_fnd)

{

fprintf(stdprn,”%-20s\n\r\n\r”’,grp_dbf._music_type);

}

else

{
fprintf(stdprn, ”’Unknown\n\r\n\r”’);

*/

384:
385:
386:
387:
388:
389:
390:
391:
392:
393:
394:
395:
396:
397:
398:
399:
400:
401:
402:
403:
404:
405:
406:
407:
408:
409:
410:
411:
412:
413:
414:
415:
416:
417:
418:
419:
420:
421:
422:
423:
424:
425:
426:
427:
428:
429:
430:
431:
432:
433:

__ */

/* MEDIUM Information */
fprintf(stdprn, “Medium: *“);
if (med_fnd)

fprintf(stdprn, ”%-35s\n\r\n\r”’,med_dbf.desc);
3
else
{
fprintf(stdprn, ”’Unknown\n\r\n\r”’);
¥

/* ALBUM Information */

/* Setup date purchased */

strncpy(hold_items, alb_dbf.date_purch.month, 2);
hold_items[2] = “/~;

strncpy(hold_items+3, alb_dbf.date_purch.day, 2);
hold_items[5] = “/”;

strncpy(hold_items+6, alb_dbf.date_purch.year, 2);
hold_items[8] ="\0";

fprintf(stdprn,”Date Purchased: %-8s\n\r\n\r”, hold_items);

/* Setup formatting for COST */
strncpy(hold_items, alb_dbf.cost, 3);
hold_items[3]=".";

strncpy(hold_items+4, alb_dbf.cost+3, 2);
hold_items[6] = “\0”;

fprintf(stdprn,”Cost: $%6s\n\r’, hold_items);

/* Setup formatting for VALUE */
strncpy(hold_items, alb_dbf.value, 3);
hold_items[3]=".";

strncpy(hold_items+4, alb_dbf.value+3, 2);
hold_items[6] = “\0”;

fprintf(stdprn,”Value: $%6s\n\r\n\r”, hold_items);

/* SONGS Information */
print_song_hdr();

for (i=0; i<7; i++)
{

continues

699

700

Reporting

Listing 19.5. continued

434: fprintf(stdprn,” %2d %-40s %2s:%2s\n\r”,
435: i+1, alb_songs[i]-title,

436: alb_songs[i]-minutes,

437: alb_songs[i]-.seconds);

438: 3}

439:

440: fprintf(stdprn,”\n\r”’);

441 : fprintf(stdprn,”\f”);

442: }

443:

444:

445: /*

446: * switch_globals()

447: *

448: void switch_globals(int whichone, int whichway)
449: {

450:

451: switch(whichone)

452:

453: case ALBUMS:

454: if (whichway == TO_GLOBAL)
455: {

456: idx_fp = alb_idx_fp;

457: db_fp = alb_db_fp;

458: nbr_records = alb_nbr_recs;
459: start_rec = alb_start_rec;
460: }

461: else /* Take FROM_GLOBAL */
462: {

463: alb_idx_fp = idx_fp;

464: alb_db_fp = db_fp;

465: alb_nbr_recs = nbr_records;
466: alb_start_rec = start_rec;
467: 3}

468: break;

469:

470:

471: case GROUPS: if (whichway == TO_GLOBAL)
472: {

473: idx_fp = grp_idx_fp;

474: db_fp = grp_db_fp;

475: nbr_records = grp_nbr_recs;
476: start_rec = grp_start_rec;
477: 3}

478: else /* Take FROM_GLOBAL */
479: {

480: grp_idx_fp = idx_*Fp;

481: grp_db_fp = db_fp;

482: grp_nbr_recs = nbr_records;

*/

483:
484:
485:
486:
487:
488:
489:
490:
491:
492:
493:
494:
495:
496:
497:
498:
499:
500:
501:
502:
503:

grp_start_rec = start_rec;

}

break;

case MEDIUM: if (whichway == TO_GLOBAL)

{
idx_fp

med_idx_fp;

db_fp = med_db_*fp;

nbr_records = med_nbr_recs;

start_rec = med_start_rec;
}
else /* Take FROM_GLOBAL */
{

med_idx_Ffp = idx_Fp;

med_db_fp = db_fp;

med_nbr_recs
med_start_rec
H
break;
¥
H

= nbr_records;

start_rec;

Ot

Walking on the Moon

Group: Philippe Kahn

Group Desc: Jazz Music by the Owner of Borland International.

Features several famous people

Type of Music: Jazz
Medium: Compact Disc
Date Purchased: 12/13/92

Cost: $ 14.95
Value: $342.00

SONGS:

Track Song Title

01 O0Ps!

02 Interlude

03 Walkin” on the Moon
04 Interlude

05 Epistrophy

06 Interlude

07 S, E and L

Today: 02/20/94

Tim
05:
00:
07
00:
04:
00:
04:

e

06
00

:28

00
35
00
10

701

702

Reporting

08 All’s Well That Ends 08:12
09 Interlude 00:00
10 This Masquerade 05:48
11 Interlude 00:00
12 Ralph’s Piano Waltz 05:45
13 Interlude 00:00
14 Calor 08:07
15 Interlude 00:00
16 Better Days 03:49
17 Interlude 00:00
18 Mopti 05:46
19 Interlude 00:00
20 Silence 05:52

Note: Your output will look like the prototype. The specific data printed
will be dependent upon the data in your files.

Ana|y5|3 As you can see, a detailed report has the potential of requiring as much code as

an entry and edit screen. The outcome of this listing is a detailed report that

contains information out of all three data files in the Record of Records! system.
With the coding that you have already done in this book, you should be able to follow
a majority of this listing on your own. There are just a few areas that may need
explanation.

Because the 1/0 functions used asingle set of global variables, there is some complexity
inthelisting. In fact, a function was necessary to swap the global 1/O variables between
files. This function, called switch_globals(), is presented in lines 445 to 503.
Variables are set up to hold each database’s global information (see lines 36 to 51).
When each of the files is opened, it will call the switch_globals() function to copy
the generic global values to the file specific areas. As each file is needed, the file-specific
variables will be copied back to the global areas.

To call this report, you pass music_rpt() astring. If the string is of zero length, then
all of the records in the albums database are printed. If you pass a string value, then
only that particular title is printed. To give the user the ability to enter a specific string,
you need to modify the REC_RPTG.C listing.

Two changes need to be made. The first change is to the case statement for printing
anindividual title with the detail report. Thiswas lines 161 to 166 of Listing 19.1. You
should replace this case with the following:

case 2: /* Menu option 2 */
cursor_on();

rv = get_alb_selection(alb_ttl);
if(rv == NO_ERROR)

{
if(strlen(alb_ttl) =0)
{
music_rpt(alb_ttl);
3
else
{
display_msg_box(“No title entered.”,
ct.err_fcol, ct.err_bcol);
3
¥
break;

As you can see, you will call a function called get_alb_selection() to determine
which title should be printed. The parameter being passed is a character array of 31
characters that needs to be declared at the beginning of the do_detai I_album_menu()
function. If the return value from the get_alb_selection(function is not an error,
thenastring may have been entered. The next line uses strien() toensure thatastring
has been entered. If you pass a zero length string to music_rpt(), you would get a
listing of all the musical items. Because that is a separate menu option, you want to
print an error here.

The second change to the REC_RPTG.C listing is the addition of the new
get_alb_selection() function. Listing 19.6 presents an updated REC_RPTG.C
listing with the new changes and function added. You should also notice that the
prototype for this function was added to the beginning of the listing.

Listing 19.6. REC_RPTG.C with the get_alb_selection()

Type function.

1: /*

2: * Filename: REC_RPTG.c

3: * RECORD OF RECORDS - Version 1.0

4: *

5: * Author: Bradley L. Jones

6: * Gregory L. Guntle

7: *

8: * Purpose: The Reporting menus.

9: *

10: * Note: Assumes 80 columns by 25 columns for screen.
11: * */
12:

13: #include <stdio.h>
14: #include <string.h>
15: #include <ctype.h>

continues

703

704

Reporting

Listing 19.6. continued

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:

#include “tyac.h”
#include “records.h”

/* ____________________ *
* prototypes *
P, */

#include “recofrec.h”

int do_detail_album_menu(void);
int get_alb_selection(char *);

/'k

* main()

int do_reporting(void)
{
int rv = 0;
int cont = TRUE;
int menu_sel = 0;
char *saved_screen = NULL;

char *rpt_menu[10] = {

1. Detailed Information”,
“2. List of Musical Item”,
“3. List of Groups “,
“4_ List of Medium Codes™,

*/

“1nd-,
“2Mm””,
“36g”,
iy

“5. Return to Main Menu “, “5RrEeQq” };

char MENU_EXIT_KEYS[MAX_KEYS] = {F3, F10, ESC_KEY};

while(cont == TRUE)
{

/* loop in temp menu */

saved_screen = save_screen_area(10, 21, 28, 58);

rv = display_menu(12, 30, DOUBLE_BOX, rpt_menu, 10,
MENU_EXIT_KEYS, &menu_sel, NO_LR_ARROW,

SHADOW) ;

switch(rv)
{

case ENTER_KEY: /* accept selection */

case CR:
switch(menu_sel)

{

case 1: /* Menu option 1 */
cursor_on();

do_detail_album_menu(Q);

65: break;

66:

67: case 2: /* Menu option 2 */
68: cursor_on(Q);

69: list_musical_items();
70: break;

71:

72: case 3: /* Menu option 3 */
73: cursor_on();

74: list_groups(Q);

75: break;

76:

77: case 4: /* Reporting */

78: cursor_on(Q);

79: list_medium_codes();
80: break;

81:

82: case 5: /* exit */

83: cont = FALSE;

84: break;

85:

86: default: /* continue looping */
87: boop();

88: break;

89: }

90: break;

91:

92: case ESC_KEY: rv = ENTER_KEY; /* so don’t exit clear out */
93: cont = FALSE; /* exit */
94: break;

95:

96: case F3: /* exiting */

97: cont = FALSE;

98: break;

99:

100: case F10: /* action bar */

101: rv = do_main_actionbar();
102:

103: ifC rv ==F3)

104: cont = FALSE;

105:

106: break;

107:

108: default: boop();

109: break;

110: }

111: }

112: restore_screen_area(saved_screen);

113:

114: return(rv);

continues

705

706

Reporting

Listing 19.6. continued

115: }

116:

117: /* = *
118: * Detailed Musical Item Report *
119 *oee */
120:

121: int do_detail_album_menu(void)

122: {

123: int rv =0;

124: int cont = TRUE;

125: int menu_sel = 0;

126: char *saved_screen = NULL;

127: char alb_ttl[31];

128:

129:

130: char *album_menu[6] = {

131: “1. AIl Items”, “lAa”,

132: “2. One ltem “, “200”,

133: “3. Return “, “3RrEeQq” };

134:

135: char MENU_EXIT_KEYS[MAX_KEYS] = {F3, F10, ESC_KEY};
136:

137: while(cont == TRUE) /* loop in temp menu */
138: {

139: saved_screen = save_screen_area(13, 19, 35, 55);
140:

141: rv = display_menu(14, 40, DOUBLE_BOX, album_menu, 6,
142: MENU_EXIT_KEYS, &menu_sel, NO_LR_ARROW,
143: SHADOW) ;

144:

145: switch(rv)

146: {

147: case ENTER_KEY: /* accept selection */

148: case CR:

149: switch(menu_sel)

150: {

151: case 1: /* Menu option 1 */

152: cursor_on(Q);

153: music_rpt(*“’); /* empty string for all*/

154: break;

155:

156: case 2: /* Menu option 2 */

157: cursor_on();

158: rv = get_alb_selection(alb_ttl);
159: if(rv == NO_ERROR)

160: {

161: if(strlen(alb_ttl) !'=0)
162: {

163: music_rpt(alb_ttl);

164: 3

165: else

166: {

167: display_msg_box(“No title entered.”,
168: ct.err_fcol, ct.err_bcol);
169: }

170: }

171: break;

172:

173: case 3: /* Exit menu */

174: cont = FALSE;

175: break;

176:

177: default: /* continue looping */
178: boop();

179: break;

180: }

181: break;

182:

183: case ESC_KEY: rv = ENTER_KEY; /* so don’t exit clear out */
184: cont = FALSE; /* exit */
185: break;

186:

187: case F3: /* exiting */

188: cont = FALSE;

189: break;

190:

191: case F10: /* action bar */

192: rv = do_main_actionbar();
193:

194: ifC rv == F3)

195: cont = FALSE;

196:

197: break;

198:

199: default: boop();

200: break;

201: }

202: }

203: restore_screen_area(saved_screen);

204:

205: return(rv);

206: }

207:

209: * Get title for reporting. *
2101 Femmmm e e e e */
211:

212: int get_alb_selection(char *title)

213: {

continues

707

Reporting

Listing 19.6. continued

214: int rv = NO_ERROR;

215: char *saved_screen = NULL;

216:

217: static char fexit_keys[5] = { F3, ESC_KEY, CR_KEY,
218: ENTER_KEY, NULL };
219: static char *exit_keys = fexit_keys;

220: getline(SET_EXIT_KEYS, 0, 4, 0, 0, 0, exit _keys);
221:

222: /*** setup colors and default keys ***/

223: getline(SET_DEFAULTS, 0, 0, 0, 0, 0, 0);

224: getline(SET_NORMAL, 0, ct.fld_fcol, ct.fld_bcol,

225: ct.fld_high_fcol, ct_.fld_high_bcol, 0);
226: getline(SET_UNDERLINE, 0, ct.fld_fcol, ct.fld_bcol,
227: ct.fld_high_fcol, ct.fld_high_bcol, 0);
228: getline(SET_INS, 0, ct.abar_fcol, ct.abar_bcol, 24, 76, 0);
229:

230:

231: saved_screen = save_screen_area(8, 22, 10, 70);

232:

233: box(8, 22, 10, 70, BLANK_BOX, FILL_BOX,

234: ct.bg_fcol, ct.bg_bcol);

235:

236: getline(CLEAR_FIELD, O, 31, 0, 0, O, title);

237:

238: write_string(“Enter Album Title:”,

239: ct.fld_prmpt_fcol, ct.fld_prmpt_bcol, 10, 10);
240:

241: rv = getline(GET_ALPHA, 0, 10, 30, 0, 30, title);
242:

243: if(rv == ESC_KEY || rv == F3)

244: {

245: getline(CLEAR_FIELD, O, 31, 0, 0, O, title);

246: rv = 1;

247: }

248: else

249: {

250: rv = 0;

251: }

252:

253: restore_screen_area(saved_screen);

254: return(rv);

255: }

256:

257: /* *
258: * end of listing *
259: * */

708

Enter Album Title:

Anal ' The get_alb_selection() function uses the same code that you used to create
y5 an entry and edit screen. Lines 217 to 228 set up the getline() function. The
only exit keys thatare used are the Escape key, the Enter or Carriage Return key,
and the F3 key. In line 231, the familiar save_screen_area() function is used to save
off the menus that are displayed on the screen. Line 233 then erases the menus from

the screen using the box() function to clear with the background colors.

Line 236 begins the process of getting the title. The field that the title will be placed
in is cleared. Line 238 displays the prompt to the user. Line 241 calls gettine() to
retrieve that actual data. If the user exits the field with the escape key or the F3 key,
then line 245 clears the field and sets the return value to an error. In any other
circumstance, the return value is set to zero. Once complete, the screen is restored to
the menus and control is returned to the calling function.

Building Flexibility into the
Reporting

You have created several reports. In the Detailed Information Report, you used a
single report to print either all or a single musical item. Being able to limit the scope
of what prints in a report is often a requirement. Many times the scope is limited by
using a box similar to the one presented to obtain the musical item title. While this
box contained only a single field, it could have contained several.

In addition to limiting the scope of what prints, you may also choose to change
whether the report prints to paper or the screen. Based on this choice, you will need
to do additional formatting. You will also need to add control for the screen because
only 25 lines can be displayed.

709

710

Reporting

Most printers will enable you to format reports with different fonts. These fonts may
be assimple as condensed and regular-sized text. In addition, bolding and underlining
are also often used in reports. Many of these features require specific information to
be sent to the computer. There are a multitude of features that could be added to
reports; however, many of them require printer-specific controls.

Summary

Today, you were presented with information on adding printed reports to your
applications. Several list reports were presented along with a detailed report. The list
reportssimply listinformation from asingle file, whereas the detailed report was much
more complex. Before beginning the coding on a report, you should create a
prototype. A prototype gives you the ability to see what the report will look like before
you take the time to code it. It is easier to change a prototype than it is to modify the
code.

Q&A

Q How important is reporting in an application?

A Most people prefer to obtain data from a report rather than try to view it
from the entry and edit. Most entry and edit screens will only allow one
record to be viewed at a time. A report allows multiple records to be seen at
the same time.

Q How many reports should be provided?

A You should provide your users with whatever reports are needed. Often, by
adding a few selection criteria—such as all or one—you can provide fewer
reports and still meet the needs of the users.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned.

ﬁl

What is a benefit of prototyping a report?

What is a list?

What are some of the benefits to listing information from a file?
Why are 9s used on a prototype?

Why are Xs used on a prototype?

Why is it good to include the current date on a report?

Why is it good to include “real” data on a report prototype?

How many lines can generally print on a page?

© © N o o &~ w N e O

Using the name data presented below, what would be printed using the
following prototype?

The prototype:

Last name First name Middle Initial
XXXXXXX, XXXXX X.

The name data;

Last name First name Middle name
Foster MaryBeth Elizabeth
Bell Mike James
Livenstone Angela
EXxercises
1. Modify the List of Groups Report. Don’t print lines that contain blank
members.

2. Create a prototype for a Musical Item List. This list should contain the title
and the group name.

3. Write the code to create the Musical Item List that was prototyped in
Exercise 2.

4. ON YOUR OWN: Create additional reports and include them in the Record
of Records! application.

5. ON YOUR OWN: Create your own reports for your own application.

711

