
103

4

WEEK

44
Tapping into
System Resources

11

104

Tapping into System Resources
DAYDAY

4

Today you will be introduced to many concepts that are not in most beginning C
books. Several of today’s topics will help bring your C programs to a new level. In
addition, after today’s lessons, you will have several useful functions. Today you will
learn:

■ The downside of tapping into system resources.

■ The various methods for taking advantage of system resources.

■ How to use the ANSI driver to control the screen.

■ How to change colors, key values, and the cursor’s position.

■ What direct video memory updating is.

■ What BIOS is and how it differs from the ANSI functions.

What Are System Resources?
System resources are resources provided by your computer system that add function-
ality. Such resources help you accomplish many tasks that would otherwise be nearly
impossible. These tasks could include working with the video display, loading fonts,
accessing disk drives, determining memory size, accessing the keyboard, reading a
joystick, and much more.

System resources can’t be used without any concerns. The cost of using system
resources can vary. The largest concern with using system resources should be with
portability. Depending on which system resources you access, you could greatly limit
the portability of your programs. The resources that will be presented today can be
found on most IBM-compatible machines running MS/DOS or an operating system
that supports MS/DOS. A different computer platform, such as a Macintosh, may not
be able to run the programs presented.

Working with the Display
One of the characteristics of C is its flexibility. Typically, there are several ways to
accomplish similar tasks. Each method has its own pros and cons. This is especially
true when working with system resources. There are various system resources that can
be used to work with information on a display. Three areas will be examined along
with some of their individual pros and cons. These areas are:

105

4

■ Using ANSI functions

■ Using direct memory access

■ Using BIOS

The first two areas will be covered today, and the third will be covered in detail on
Day 8, “Tapping System Resources via BIOS.”

Using ANSI Functions
ANSI stands for American National Standards Institute. ANSI sets standards for more
than just computer languages. ANSI is often mentioned in describing the standards
set for the C language. The ANSI standards go beyond just the C programming
language. The ANSI committee is devoted to developing standards for any area that
will promote the productivity and international competiveness of American enter-
prises.

The ANSI terminal standards can be used on an IBM-compatible computer that has
loaded the ANSI.SYS system driver. The ANSI.SYS driver comes with Microsoft and
PC DOS. Once installed, the ANSI system driver enables the computer to use
functions that allow for cursor movement, display extended graphics, and redefine key
values. To install the ANSI.SYS driver, consult the manuals that came with your
computer’s operation system.

The Pros and Cons of Using the ANSI
Functions
There are pros and cons to using the ANSI functions. The most obvious benefit is that
using the ANSI functions is relatively simple. Once the driver has been installed, the
functions are easily called. Later today, you’ll see how easy this is. Another benefit is
that the ANSI functions are well documented. Since the ANSI driver generally comes
with the computer’s operating system, there is usually an abundance of documenta-
tion. The commands that you learn later today can be used in your C programs. They
can also be used in other languages, or in native operation system commands such as
PROMPT.

Using ANSI functions isn’t without a downside. The biggest problem comes from
running on a system that doesn’t support the ANSI functions. If the program doesn’t
support the ANSI functions, or if the ANSI.SYS driver has not been loaded, then
gibberish may be displayed on the screen. It’s this reliance on the ANSI.SYS driver that
causes most programmers to avoid the ANSI functions. That not all operating systems
support the ANSI terminal functions should be a factor when considering whether to
use them.

106

Tapping into System Resources
DAYDAY

4

In the following sections, several tables list ANSI controls and functions. These
functions all require the ANSI.SYS driver to be loaded on your computer to operate
properly. Following is an example of the line in a CONFIG.SYS file that loads the
ANSI driver.

DEVICE=C:\DOS\ANSI.SYS

You should consult your computer’s operating system manuals before modifying the
CONFIG.SYS.

The ANSI Functions
The ANSI functions aren’t really functions. Instead they are really escape sequences
to control the system’s video screen and keyboard. An escape sequence is a series of
ASCII characters. A complete table of the individual ASCII characters is presented in
Appendix B.

The first ASCII character in the escape sequence is either the escape character (value
27 or 1Bh) or the left-bracket character. The characters following the escape or left-
bracket character determine what process occurs. The escape sequence may be upper-
or lowercase letters depending on what the escape sequence does. This will be
demonstrated later.

Note: A variety of functions will be created that use the ANSI functions.
Later today and in later days, you’ll learn other ways to accomplish the
same task using better methods.

Escape Sequences
Several tables follow that contain the codes that will be used in the ANSI escape
sequences. Tables 4.1 and 4.2 present the ANSI color codes.

Table 4.1. ANSI foreground colors.

Code Color

30 Black

31 Red

32 Green

107

4

33 Yellow

34 Blue

35 Magenta

36 Cyan

37 White

Table 4.2. ANSI background colors.

Code Color

40 Black

41 Red

42 Green

43 Yellow

44 Blue

45 Magenta

46 Cyan

47 White

By themselves, the values presented in these tables don’t make a great deal of sense;
however, later you’ll see how to use these codes. Table 4.3 presents the ANSI text
control characters that can also be used. These can be used in conjunction with the
ANSI colors. Table 4.4 provides video mode controls that can be used to change the
width or type of the video mode.

Table 4.3. The ANSI text controls.

Code Control

0 All attributes off

1 Bold on

Code Color

continues

108

Tapping into System Resources
DAYDAY

4

4 Underscore

5 Blink on

7 Reverse video on

8 Concealed on

Table 4.4. Setting video mode.

Control Resolution Type

0 40×148×25 monochrome text

1 40×148×25 color text

2 80×148×25 monochrome text

3 80×148×25 color text

4 320×148×200 4-color graphics

5 320×148×200 monochrome graphics

6 640×148×200 monochrome graphics

7 (enables line wrapping)

13 320×148×200 color graphics

14 640×148×200 color 16-color graphics

15 640×148×350 monochrome 2-color graphics

16 640×148×350 color 16-color graphics

17 640×148×480 monochrome 2-color graphics

18 640×148×480 color 16-color graphics

19 320×148×200 color 256-color graphics

Table 4.5 presents the ANSI character values that can be used.

Table 4.3. continued

Code Control

109

4

Table 4.5. ANSI character values.

SHIFT CTRL ALT
Key Code +code +code +code

F1 0;59 0;84 0;94 0;104

F2 0;60 0;85 0;95 0;105

F3 0;61 0;86 0;96 0;106

F4 0;62 0;87 0;97 0;107

F5 0;63 0;88 0;98 0;108

F6 0;64 0;89 0;99 0;109

F7 0;65 0;90 0;100 0;110

F8 0;66 0;91 0;101 0;111

F9 0;67 0;92 0;102 0;112

F10 0;68 0;93 0;103 0;113

F11 0;133 0;135 0;137 0;139

F12 0;134 0;136 0;138 0;140

HOME (num keypad) 0;71 55 0;119 —

UP ARROW (num keypad) 0;72 56 (0;141) —

PAGE UP (num keypad) 0;73 57 0;132 —

LEFT ARROW (num keypad) 0;75 52 0;115 —

RIGHT ARROW (num keypad) 0;77 54 0;116 —

END (num keypad) 0;79 49 0;117 —

DOWN ARROW (num keypad) 0;80 50 (0;145) —

PAGE DOWN (num keypad) 0;81 51 0;118 —

INSERT (num keypad) 0;82 48 (0;146) —

DELETE (num keypad) 0;83 46 (0;147) —

HOME (224;71) (224;71) (224;119) (224;151)

UP ARROW (224;72) (224;72) (224;141) (224;152)

continues

110

Tapping into System Resources
DAYDAY

4

PAGE UP (224;73) (224;73) (224;132) (224;153)

LEFT ARROW (224;75) (224;75) (224;115) (224;155)

RIGHT ARROW (224;77) (224;77) (224;116) (224;157)

END (224;79) (224;79) (224;117) (224;159)

DOWN ARROW (224;80) (224;80) (224;145) (224;154)

PAGE DOWN (224;81) (224;81) (224;118) (224;161)

INSERT (224;82) (224;82) (224;146) (224;162)

DELETE (224;83) (224;83) (224;147) (224;163)

PRINT SCREEN — — 0;114 —

PAUSE/BREAK — — 0;0 —

BACKSPACE 8 8 127 (0)

ENTER 13 — 10 (0

TAB 9 0;15 (0;148) (0;165)

NULL 0;3 — — —

A 97 65 1 0;30

B 98 66 2 0;48

C 99 66 3 0;46

D 100 68 4 0;32

E 101 69 5 0;18

F 102 70 6 0;33

G 103 71 7 0;34

H 104 72 8 0;35

I 105 73 9 0;23

J 106 74 10 0;36

K 107 75 11 0;37

Table 4.5. continued

SHIFT CTRL ALT
Key Code +code +code +code

111

4

L 108 76 12 0;38

M 109 77 13 0;50

N 110 78 14 0;49

O 111 79 15 0;24

P 112 80 16 0;25

Q 113 81 17 0;16

R 114 82 18 0;19

S 115 83 19 0;31

T 116 84 20 0;20

U 117 85 21 0;22

V 118 86 22 0;47

W 119 87 23 0;17

X 120 88 24 0;45

Y 121 89 25 0;21

Z 122 90 26 0;44

1 49 33 — 0;120

2 50 64 0 0;121

3 51 35 — 0;122

4 52 36 — 0;123

5 53 37 — 0;124

6 54 94 30 0;125

7 55 38 — 0;126

8 56 42 — 0;126

9 57 40 — 0;127

0 48 41 — 0;129

SHIFT CTRL ALT
Key Code +code +code +code

continues

112

Tapping into System Resources
DAYDAY

4

- 45 95 31 0;130

= 61 43 — 0;131

[91 123 27 0;26

] 93 125 29 0;27

92 124 28 0;43

; 59 58 — 0;39

‘ 39 34 — 0;40

, 44 60 — 0;51

. 46 62 — 0;52

/ 47 63 — 0;53

‘ 96 126 — (0;41)

ENTER (keypad) 13 — 10 (0;166)

/ (keypad) 47 47 (0;142) (0;74)

* (keypad) 42 (0;144) (0;78) —

- (keypad) 45 45 (0;149) (0;164)

+ (keypad) 43 43 (0;150) (0;55)

5 (keypad) (0;76) 53 (0;143) —

**Table is from Microsoft DOS manual.

Table 4.5. continued

SHIFT CTRL ALT
Key Code +code +code +code

113

4

Type

Type

Types of ANSI Sequences
Using the values in the previous tables, you can accomplish a multitude of tasks. Each
task, or function, uses a different sequence of characters. For example:

1B[r;cH

where r = a row on the screen

where c = a column on the screen

This escape sequence can be used to move the cursor position. The 1B is the value for
ESCAPE, hence the phrase escape sequence. The left bracket begins the sequence and
the rest of the sequence determines the specific functionality. To use the escape
sequence, you simply print it to the screen. This can be done with the printf()
function. Consider the following C functions in Listing 4.1.

Listing 4.1. CPUT.C. Place the cursor on the screen.

void put_cursor(int row, int col)
{
 printf(“\x1B[%d;%dH”, row, col);
}

This function moves the cursor to the position on the screen specified by row and col.
The value printed in the printf() function is the ANSI escape sequence for moving
the cursor. If the escape sequence was used without a row and column value, then the
cursor would move to the top, left position (home) on the screen.

Moving the Cursor
Several escape sequences are available to move the cursor. For example, the escape
sequence

1B[xA

moves the cursor up, toward the top of the screen. The cursor moves the number of
lines specified by x. If the cursor is already at the top, or if the number is larger than
the number of lines available to move, then the cursor stops at the top line. You can
easily put this sequence into a more usable C function, as shown in Listing 4.2.

Listing 4.2. CUP.C. Move the cursor up.

void move_cursor_up(int nbr_rows)
{
 printf(“\x1B[%dA”, nbr_rows);
}

114

Tapping into System Resources
DAYDAY

4

Type

Type

Type

Following is an escape sequence that moves the cursor down:

1B[xB

This operates in the same manner as moving the cursor up. Listing 4.3 shows a
function that makes use of this escape sequence.

Listing 4.3. CDOWN.C. Move the cursor down.

void move_cursor_down(int nbr_rows)
{
 printf(“\x1B[%dB”, nbr_rows);
}

In addition to moving the cursor up and down, you may also want to move the cursor
forward and backward. The escape sequence to move the cursor forward is:

1B[xC

The sequence to move the cursor backward is:

1B[xD

Each of these sequences attempts to move the cursor. Like the previous functions, if
the function attempts to move the cursor beyond the edge of the screen, the cursor
stops at the edge. Listings 4.4 and 4.5 provide two C functions that are more usable.

Listing 4.4. CRIGHT.C. Move the cursor right.

void move_cursor_right(int nbr_col)
{
 printf(“\x1B[%dC”, nbr_col);
}

Listing 4.5. CLEFT.C. Move the cursor left.

void move_cursor_left(int nbr_col)
{
 printf(“\x1B[%dD”, nbr_col);
}

With these five functions, you have everything you need to control the movement of
the cursor. There are two additional cursor functions that may be useful. These are
functions to save and restore the cursor.

115

4

Type

Use the escape sequence

1B[s

to save the current cursor position. Only the last position can be saved. If you call on
this function more than once, only the last position will be remembered.

You can restore the saved cursor position by using the following escape sequence:

1B[u

This puts the cursor back to the position saved. Listing 4.6 and Listing 4.7 contain
two C functions that make using these escape sequences easier.

Listing 4.6. SAVECURS.C. Save the current
cursor position.

void save_cursor_position(void)
{
 printf(“\x1B[s”);
}

Listing 4.7. RSTRCURS.C. Restore the saved
cursor position.

void restore_cursor_position(void)
{
 printf(“\x1B[u”);
}

Erasing the Screen
Several escape sequences are available for erasing either part or all of the screen. The
types of functions and the escape sequences available to accomplish them follow.

To erase the entire screen:

1B[2J

This escape sequence clears the entire screen. When completed, the cursor is placed
in the top, left position on the screen. Listing 4.8 shows a function for using this escape
sequence.

Type

116

Tapping into System Resources
DAYDAY

4

Type

Type Listing 4.8. CLRSCRN.C. Clear the screen.

void clear_screen(void)
{
 printf(“\x1B[2J”);
}

The clear_screen() function clears the entire screen. Sometimes there is a need to
clear only portions of the screen. The following escape sequence clears the characters
on a line starting at the position of the cursor:

1B[K

The following function in Listing 4.9 uses this escape sequence to clear to the end of
the line. You should note that the character at the location of the cursor is also cleared.

Listing 4.9. CLEAREOL.C. Clear to the end of the line.

void clear_eol(void)
{
 printf(“\x1B[K”);
}

All of these cursor functions are easily used. Listings 4.1 and 4.2 pull these functions
into files called A_CURSOR.C and A_CURSOR.H respectively. These files contain
all the functions shown up to this point. By compiling the A_CURSOR.C file along
with the A_CURSOR.H file, you can use them in all of your programs without
retyping them. Listing 4.3 is a program that illustrates the use of several of these
functions. Notice that this program doesn’t include the code for each of the functions
used. Instead, it includes the header file with the prototypes, A_CURSOR.H. When
you compile Listing 4.3, you’ll want to also compile A_CURSOR.C. This can be
done as follows:

TCC LIST0403.C A_CURSOR.C

You should replace TCC with the appropriate compile command for your compiler.
If you are using an integrated development environment, you should have both files
open.

Note: If you decide to use the ANSI functions in many of your programs,
you may want to create a library containing all of them. Instructions on
creation and use of a library are provided on Day 7, “Using Libraries.”

117

4

Type Listing 4.10. A_CURSOR.C. The ANSI cursor functions.

1: /* Program: A_CURSOR.c
2: * Author: Bradley L. Jones
3: * Purpose: Source file for a multitude of ANSI cursor
4: * functions.
5: *===*/
6:
7: #include “a_cursor.h”
8: #include <stdio.h>
9:
10: /*-----------------------------*
11: * The Functions *
12: *------------------------------*/
13: /*** put the cursor on the screen ***/
14: void put_cursor(int row, int col)
15: {
16: printf(“\x1B[%d;%dH”, row, col);
17: }
18:
19: /*** move the cursor up ***/
20: void move_cursor_up(int nbr_rows)
21: {
22: printf(“\x1B[%dA”, nbr_rows);
23: }
24:
25: /*** move the cursor down ***/
26: void move_cursor_down(int nbr_rows)
27: {
28: printf(“\x1B[%dB”, nbr_rows);
29: }
30:
31: /*** move cursor to the right ***/
32: void move_cursor_right(int nbr_col)
33: {
34: printf(“\x1B[%dC”, nbr_col);
35: }
36:
37: /*** move the cursor to the left ***/
38: void move_cursor_left(int nbr_col)
39: {
40: printf(“\x1B[%dD”, nbr_col);
41: }
42:
43: /*** Save the cursor’s position ***/
44: void save_cursor_position(void)
45: {
46: printf(“\x1B[s”);
47: }
48:

continues

118

Tapping into System Resources
DAYDAY

4

Type

49: /*** Restore the cursor’s position ***/
50: void restore_cursor_position(void)
51: {
52: printf(“\x1B[u”);
53: }
54:
55: /*** clear the screen ***/
56: void clear_screen(void)
57: {
58: printf(“\x1B[2J”);
59: }
60:
61: /*** clear to end of line ***/
62: void clear_eol(void)
63: {
64: printf(“\x1B[K”);
65: }

Listing 4.11. A_CURSOR.H. The ANSI cursor
functions header file.

1: /* Program: A_CURSOR.H
2: * Author: Bradley L. Jones
3: * Purpose: Header file for the multitude of ANSI cursor
4: * functions.
5: *===*/
6:
7: /*-------------------------*
8: * Function prototypes *
9: *-------------------------*/
10:
11: void put_cursor(int row, int col);
12: void move_cursor_up(int nbr_rows);
13: void move_cursor_down(int nbr_rows);
14: void move_cursor_right(int nbr_col);
15: void move_cursor_left(int nbr_col);
16: void save_cursor_position(void);
17: void restore_cursor_position(void);
18: void clear_screen(void);
19: void clear_eol(void);
20:
21: /*---------- end of file ----------*/

Listing 4.10. continued

119

4

Type
Listing 4.12. LIST0403.C. Using the ANSI
cursor functions.

1: /* Program: LIST0403.c
2: * Author: Bradley L. Jones
3: * Purpose: Demonstrates ANSI cursor escape sequences.
4: *===*/
5:
6: #include <stdio.h>
7: #include “a_cursor.h”
8:
9: /*** Function prototypes ***/
10: void box(int ul_row, int ul_col, int lr_row, int lr_col,

 unsigned char ch);
11:
12: void main(void)
13: {
14: int row,
15: column,
16: x,
17: y;
18:
19: save_cursor_position();
20: clear_screen();
21:
22: box(1, 18, 3, 61, ‘*’);
23:
24: put_cursor(2, 21);
25: printf(“ THIS IS AT THE TOP OF THE SCREEN “);
26:
27: box(15, 20, 19, 60, 1);
28: box(16, 24, 18, 56, 2);
29:
30: restore_cursor_position();
31: }
32:
33: void box(int ul_row, int ul_col, int lr_row, int lr_col,

 unsigned char ch)
34: {
35: int x, y;
36:
37: if((ul_row > lr_row) || (ul_col > lr_col))
38: {
39: printf(“Error calling box.”);
40: }
41: else
42: {
43: for(x = ul_row; x <= lr_row; x++)
44: {
45: put_cursor(x, ul_col);

continues

120

Tapping into System Resources
DAYDAY

4

Listing 4.12. continued

46:
47: for(y = ul_col; y <= lr_col; y++)
48: {
49: printf(“%c”, ch);
50: }
51: }
52: }
53: }

Note: As stated earlier, to use the ANSI functions, the ANSI.SYS driver
must be loaded, otherwise, you won’t get the expected results.

Output

As you can see, working with the ANSI functions gives you a great deal of
control over the output. Listing 4.1 is a listing that you’ll want to build on
as you learn more ANSI functions later today. This listing, A_CURSOR.C,

contains all of the ANSI cursor functions. Line 7 includes a header file called
A_CURSOR.H which is presented in Listing 4.2. The A_CURSOR.H header file
contains function prototypes for all of the functions in Listing 4.1. You’ll want to
include the A_CURSOR.H header file in any programs that include the ANSI cursor
functions. Listing 4.3 is an example of one such program.

Listing 4.3 is a fun program. It uses the ANSI function that you have learned to create
a new function called box(). Line 10 contains the prototype for the box() function.
As you can see, it takes several parameters. The parameters tell you where the box is
to be located. The upper-left row (ul_row), the upper-left column (ul_col), the

Analysis

121

4

lower-right row (lr_row), and the lower-right column (lr_col) are all passed along
with the character that the box is to be made with.

The box() function is defined in lines 33 to 53. This function used two for loops to
create the box. Each line of the box is drawn one at a time. The cursor is placed at the
beginning of each line using the put_cursor() functions. A printf() call then places
each character on the line. Later today, this function will be enhanced to also include
color.

There are a few other notables in this program. Line 19 uses the save_cursor_position()
function to save the cursor position. Line 30 restores the position just before the
program ends. Line 20 clears the screen using the clear_screen() function. Line 22
calls the box() function which creates a box centered in the top of the screen. Line 24
places the cursor in the box using the put_cursor() function so line 25 can type a
header into the middle of the box. Lines 27 and 28 call the box function two more
times. The character with a decimal value of 1, a clear smiley face, is printed in the first
call to box(). The second call to box() prints solid smiley faces in the middle of the
original box.

ANSI and Color
You can use the ANSI driver to manipulate the screens colors also. Changing colors
is a little more difficult than the functions shown before. Table 4.1 presented the
foreground colors that can be used. Foreground colors are used on the information
that is presented on the screen. This includes all the text. Table 4.2 presented the
background colors that are available through the ANSI driver. This is the color that
will be put on the screen behind the text.

Foreground and background colors are often used in conjunction with each other.
Typically, you’ll want to state what color is in the foreground and what color is in the
background. When you use the ANSI colors, once you set them, they apply from that
point on.

The ANSI command to set the color is as follows:

1B[a;b;...;nm

For this escape sequence, you can stack several commands at once. The parameters,
a, b,...,n are each replaced with a command from Tables 4.1, 4.2, and/or 4.3. If
conflicting commands are given, the final command is used. For instance calling for
the foreground color black (30) followed by the foreground color red (31) would
result in red. After all, you can’t use two foreground colors at once. Don’t be confused,
you can have more than one foreground color on your screen, but you can’t try to write
a single character in both black and red at the same time. Listings 4.4 and 4.5

122

Tapping into System Resources
DAYDAY

4

Type

demonstrate the use of the ANSI color attributes. Listing 4.4 is a header file that is
included in Listing 4.5. You’ll need to remember to use the A_CURSOR source file
that was used with Listing 4.3 since a few of the earlier ANSI functions are also used.

Listing 4.13. ANSICLRS.H. The ANSI colors.

1: /* Program: ANSICLRS.h
2: * Author: Bradley L. Jones
3: * Purpose: Header file for ANSI colors
4: *===*/
5:
6: /*-------------------------*
7: * Foreground colors *
8: *-------------------------*/
9:
10: #define F_BLACK 30
11: #define F_RED 31
12: #define F_GREEN 32
13: #define F_YELLOW 33
14: #define F_BLUE 34
15: #define F_MAGENTA 35
16: #define F_CYAN 36
17: #define F_WHITE 37
18:
19: /*-------------------------*
20: * Background colors *
21: *-------------------------*/
22:
23: #define B_BLACK 40
24: #define B_RED 41
25: #define B_GREEN 42
26: #define B_YELLOW 43
27: #define B_BLUE 44
28: #define B_MAGENTA 45
29: #define B_CYAN 46
30: #define B_WHITE 47
31:
32: /*-------------------------*
33: * Attributes *
34: *-------------------------*/
35:
36: #define BOLD 1
37: #define UNDERSCORE 4
38: #define BLINK 5
39: #define REVERSE 7
40: #define CONCEAL 8
41:
42: /*---------- end of file ----------*/

123

4

Type Listing 4.14. LIST0405.C. Using the ANSI colors.

1: /* Program: LIST0405.c
2: * Author: Bradley L. Jones
3: * Purpose: Demonstrates ANSI colors.
4: *===*/
5:
6: #include <stdio.h>
7: #include “a_cursor.h”
8: #include “ansiclrs.h”
9:
10: /*** Function prototypes ***/
11:
12: void box(int ul_row, int ul_col,
13: int lr_row, int lr_col,
14: unsigned char ch,
15: int fcolor, int bcolor);
16:
17: void color_string(char *string, int fcolor, int bcolor);
18: void set_color(int fore, int back);
19:
20: void main(void)
21: {
22: int row,
23: column,
24: x,
25: y;
26:
27: set_color(F_WHITE, B_MAGENTA);
28:
29: clear_screen();
30:
31: box(3, 19, 5, 62, ‘ ‘, F_BLACK, B_BLACK); /* shadow */
32: box(2, 18, 4, 61, ‘*’, F_YELLOW, B_BLUE);
33:
34: put_cursor(3, 21);
35: color_string(“ THIS IS AT THE TOP OF THE SCREEN “,
36: F_RED, B_BLUE);
37:
38: box(16, 21, 21, 61, ‘ ‘, F_BLACK, B_BLACK); /* shadow */
39: box(15, 20, 20, 60, ‘*’, F_RED, B_GREEN);
40:
41: set_color(F_WHITE, B_BLACK);
42: put_cursor(23, 0);
43: }
44:
45: void box(int ul_row, int ul_col,
46: int lr_row, int lr_col,
47: unsigned char ch,
48: int fcolor, int bcolor)

continues

124

Tapping into System Resources
DAYDAY

4

49: {
50: int x, y;
51:
52: if((ul_row > lr_row) || (ul_col > lr_col))
53: {
54: printf(“Error calling box.”);
55: }
56: else
57: {
58: set_color(fcolor, bcolor);
59:
60: for(x = ul_row; x <= lr_row; x++)
61: {
62: put_cursor(x, ul_col);
63:
64: for(y = ul_col; y <= lr_col; y++)
65: {
66: printf(“%c”, ch);
67: }
68: }
69: }
70: }
71:
72: void color_string(char *string, int fcolor, int bcolor)
73: {
74: set_color(fcolor, bcolor);
75: printf(string);
76: }
77:
78: void set_color(int fore, int back)
79: {
80: printf(“\x1B[%d;%dm”, fore, back);
81: }

Note: Since this isn’t a full-color book, the output printed here isn’t in
color. On your monitor (if it is colored), this output should appear in
color.

Listing 4.14. continued

125

4

The set color function could be added to the A_CURSOR.C program. In
addition, the header file, A_CURSOR.H, could be set up to include the
prototypes for the extra functions, box(), set_color(), and color_string().

You should combine all the ANSI functions together so that they are easily accessible.
You may want to consider a better name for the files since there would be more than
just cursor functions when the new function is added.

Listing 4.5 is similar to Listing 4.3. The main difference is color has been added to the
output. Line 8 includes the ANSICLRS.H header file that is presented in Listing 4.4.
This header file contains defined constants for each of the colors and other text
attributes. By using defined constants such as these, your programs are much easier
to read. It’s not always intuitive to know that 31 means foreground red.

Several of the functions in Listing 4.5 are slightly modified from Listing 4.3. The
box() function has two additional parameters, fcolor and bcolor. These are used to
set the color of the box. Lines 31 and 32 demonstrate the use of the box function with
the additional parameters. Lines 31 and 32 also illustrate a programming trick. Line
31 creates a black box. Line 32 then overwrites the black box with a colored box. The
original black box becomes a shadow for the second box. This is how most shadows
are created.

There is a second trick that has been used. Line 27 sets the color to white on magenta
using the new function set_color(). Line 29 then calls the clear_screen(). You
should notice that the screen is cleared to the last background color set, in this case
magenta. The last color set also carries on after the program ends. For this reason, line
41 sets the color to something usable—white on black.

Output

Analysis

126

Tapping into System Resources
DAYDAY

4

Type

Most of the code presented should be easy to follow. The difficult areas were covered
when Listing 4.3 was analyzed. The only actual new code is the set_color() function
in lines 78 through 81. As you can see, the foreground and background colors are
passed to a printf() statement. As before, an escape sequence is used.

In addition to color and cursor placement, you can change the mode of the monitor
also. Table 4.4 displayed the monitor modes that can be used. Be careful using these
modes; there is no guarantee that every monitor will support all modes.

Other ANSI Functions
The ANSI functions also give you the ability to redefine the keys on the keyboard.
Table 4.5 can be used to accomplish this. There are several reasons to redefine
characters. One is to re-map your keyboard to a different keyboard layout. Another
reason might be to re-map keys a game uses. You might map the ‘A’ key to be the same
as a right arrow, the ‘D’ to be a left arrow, the ‘S’ to be a down arrow, and the ‘W’ to
be an up arrow. This would allow a game player an option of which keys to use, the
letters—which would be easier for a left-handed person—or the actual arrows.

Listing 4.15. Illustrates re-mapping of keys using the
ANSI escape sequences.

1: /* Program: LIST0406.c
2: * Author: Bradley L. Jones
3: * Purpose: Demonstrates ANSI keyboard values.
4: * Note: Running this program will set the F1 key to
5: * display “Bradley”. It will set the F2 key to
6: * display “Jones”. Running the program with an
7: * extra command line parameter will reset the
8: * F1 and F2 keys.
9: *===*/
10:
11: #include <stdio.h>
12:
13: #define F1 “0;59”
14: #define F2 “0;60”
15:
16: int main(int argc)
17: {
18: if(argc < 2)
19: {
20: printf(“\x1B[%s;66;114;97;100;108;101;121p”,F1);
21: printf(“\x1B[%s;74;111;110;101;115p”,F2);
22: }
23: else
24: {
25: printf(“\x1B[%s;%sp”,F1, F1);

127

4

26: printf(“\x1B[%s;%sp”,F2, F2);
27: }
28:
29: return;
30: }

After this program runs, there is no output.

This program appears to do nothing when executed because there isn’t any
output. However, after the program runs, the F1 and F2 keys will function
differently. Run the program and then press the F1 and F2 keys. Your

program has now changed their functionality to print “Bradley” and “Jones” instead
of performing their normal functions. If you re-execute the program and pass a
parameter as follows:

LIST0406 X

then the program will reset the F1 and F2 keys to their original functions.

As shown in the listing, this isn’t a complex program. Lines 13 and 14 define the F1
and F2 keys to make them easier to work with. Line 16 begins the main() function.
Since we are going to use a command line parameter to toggle the key values, we need
to receive the argc variable. The argc variable contains the number of items on the
command line including the program currently running. If a program runs without
any command line parameters, then the argc variable will contain 1. Line 18 checks
the value. If it is 1—less than 2—then the values of F1 and F2 are re-mapped (lines
20 and 21). The re-mapped values are stacked following the original value to be
reassigned. In this case, there are several values being assigned to the F1 and F2 keys.
The reassignment values stop when the letter ‘p’ is reached. Lines 25 and 26 are
executed when there is an additional value on the command line. In these cases, the
values of F1 and F2 are mapped to themselves. This, in effect, resets them to their
original values.

In today’s exercises, you’ll be asked to write a program similar to this one. Instead of
having the function keys print text such as your name, you’ll assign DOS commands
to them.

The Extended ASCII Characters
The ANSI functions are often combined with the extended ASCII character set. The
extended character set is considered to be the characters from 128 to 255. These
characters include special type characters, line characters, and block characters. Many

Analysis

Output

128

Tapping into System Resources
DAYDAY

4

of these characters are used to create boxes and grids that can be used on the screen.
Appendix A contains an ASCII chart that shows all of the different characters
available. Later in the book, you’ll develop an application that uses many of the
extended characters to create a user-friendly screen.

Using Direct Memory Access
Memory is set aside for use by the video display. This memory can be accessed directly
to manipulate the graphics or characters that are on the screen. Because this is memory
that is directly mapped to the video display, a change can be seen instantly. By
updating the video display’s memory directly, you can gain the fastest screen updates.

This speed comes at the cost of portability. The memory reserved for the video display
isn’t always in the same location. In an IBM-compatible computer system, a part of
the memory between 640K and 1M is reserved for the video display. Portability is lost
because the area reserved isn’t always guaranteed to be the same from computer system
to system. To use this direct video memory, the system must be 100-percent IBM-
compatible with an IBM PC’s hardware. It’s safe to assume that the same brand of
computer with the same type of hardware will have video memory stored in the same
location. It’s not safe to assume that all other computers will use the same location.
In addition, memory for using a CGA monitor isn’t always allocated in the same area
that memory for a VGA monitor would be.

Note: Borland includes a variable called directvideo. If this variable
contains a value of 1, then a program’s video display activities go directly
to the video memory. If the directvideo variable contains the value of 0,
then BIOS is used. BIOS is converted in the next section. The default for
directvideo is 1.

Because BIOS functions are more portable, they will be covered in this book. Direct
video programming is beyond the scope of this book. If you are interested in direct
video programming, consult a graphics book that has been written for your specific
compiler.

What Is BIOS?
BIOS stands for Basic Input/Output System. Every MS/PC DOS computer operates
with some form of BIOS. The BIOS is a set of service routines that are activated by

129

4

software interrupts. A software interrupt is an interruption that causes the operating
system (DOS) to respond. By going through these service routines, and therefore
BIOS, you avoid interacting directly with the computer’s hardware. This eliminates
concerns, such as the possibility of different locations for video memory, because the
BIOS determines where and what you need based on the interrupt you cause.

There are BIOS services for a multitude of different input and output activities. This
includes being able to manipulate the screen, keyboard, printers, disks, mouse, and
more. In addition, there are services available to manipulate the system date and time.
On Day 8, tables will be presented that detail many of the available interrupts. For
now, it is more important to know that these functions exist.

It’s better to use BIOS instead of direct memory video access or the ANSI functions.
Direct memory access has a downside that has already been described—you don’t
know for sure where the video memory will be located. The downside of the ANSI
functions is the external device driver; ANSI.SYS must be loaded for the functions to
work. If you run Listing 4.3 without the device driver, you get the following result:

 [s [2J
[1;18H**_[2;18H***************
*****************************_[3;18H**
--[2;21H--THIS IS AT THE TOP OF THE SCREEN--[15;20H------------
----------------[16;20H------------------------------[17;20H---
-------------------------------[18;20H-------------------------
---[19;20H----------------------------------[16;24H------------
----------- [17;24H----------------------------[18;24H---------
---------------[u--

This isn’t the desired result. By going through the BIOS, you don’t need external
device drivers, nor do you have to determine where video memory is located. The
BIOS takes care of that for you.

While all of this makes the BIOS calls sound like the perfect answer, there is a
downside to using BIOS also. The speed of going through BIOS isn’t going to be as
good as accessing video memory directly. You should note that these speeds are both
extremely fast. In addition, using the BIOS isn’t going to be as easy as using the ANSI
functions. Neither of these negatives outweighs the additional portability that you
gain by using the BIOS functions.

Output

130

Tapping into System Resources
DAYDAY

4

Summary
Today, you were provided with a great deal of information that can be fun. You were
shown how to use the ANSI.SYS driver to manipulate the screen. This included
learning how to place the cursor, clear the screen, change the colors, and re-map
keyboard values. In addition, you were given an overview of writing directly to video
memory. The day ended with a high-level discussion on BIOS, which will resume on
Day 8. On Day 8, you’ll be presented with many examples, along with a list of the
many BIOS interrupt functions that are available.

Q&A
Q Are the functions learned today portable to other computer systems?

A The functions covered in today’s materials are portable to some computers.
The ANSI functions are portable to any computer system that supports the
ANSI terminal standards. The BIOS functions are portable to computers
that are 100-percent compatible with IBM BIOS. In addition, older versions
of BIOS may not support all of the functions. You can consult your DOS
manuals and system documentation to determine what interrupts your
computer supports.

Q ANSI functions are simple to use. Why are they not recommended?

A If you ran today’s ANSI functions without the ANSI.SYS driver loaded, then
you already know the answer to this question. By using the ANSI functions,
you are reliant upon an external factor—the ANSI driver.

Q What is meant by BIOS functions being portable?

A The portability of BIOS functions isn’t necessarily the same as the portabil-
ity that will be discussed later in this book. The calls to BIOS functions
aren’t necessarily portable C code—each compiler may call interrupts
slightly differently. What is meant by portability is that an executable
program (.EXE or .COM) will have a better chance of running on many
different computer configurations than if you use ANSI functions or direct
memory writes. BIOS function calls are only portable to IBM-compatible
machines; however, they can have a multitude of different video monitors,
modems, printers, and so on.

131

4

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned.

Quiz
1. What does ANSI stand for?

2. Why is it important to know what ANSI is?

3. What is a reason for using ANSI functions?

4. What is a reason not to use ANSI functions?

5. What is the value of red?

6. What is the difference between a foreground color and a background color?

7. When does an ANSI color quit being applied?

8. What is the benefit of using direct video memory updates?

9. What is the downside of using direct video memory updates?

10. What does BIOS stand for?

Exercises
1. What does the following do?

“\x1B[5A”

2. What are the values of the following color sets?

Black on White

White on Black

Yellow on Blue

Yellow on Red

3. What is the escape sequence for the following colors?

Yellow on Blue

Bright Yellow on Red

132

Tapping into System Resources
DAYDAY

4

4. BUG BUSTER: What, if anything, is wrong with the following?

/* ANSI escape sequence to set the color */

printf(“\x1B[31;37m”);

5. BUG BUSTER: What, if anything, is wrong with the following?

void clear_entire_line(int row, int fcolor, int bcolor)

{

 put_cursor(row, 1);

 set_color(fcolor, bcolor);

 clear_eol();

}

6. Write a function called put_color_string() that takes screen coordinates, a
foreground color, a background color, and a string as parameters. The
function should print the string at the provided coordinates in the given
colors.

7. Write a program that re-maps the Shifted function keys. The values you
assign should be the most common DOS commands that you use. This
makes using these DOS commands just a little easier. (See Listing 4.6 if you
need help.)

Following are some examples of values you might use:

Shift F1HELP
Shift F2DIR
Shift F3CLS
Shift F4CHKDSK
Shift F5CD C:\ID\T7G
 * Or whatever game you most often run.

8. ON YOUR OWN: Write a function that creates a box using the extended
characters in the ASCII Table.

9. ON YOUR OWN: Write a function that centers a string on a line.

10. ON YOUR OWN: Write a function that enables the user to enter values
that are then assigned to function keys. (Similar to Exercise 7, only interac-
tive with the user.)

