File Routines:
The First Step

WEEK

532

File Routines: The First Step

On Days 14 and 15, you added menus and action bars to your application. This
helped the user to navigate effectively through your application. To make your
application truly useful, you need to be able to work with data. Until today, your
application has only been able to write data to a file. Today, you will expand on this.
Today you will:

|

d
g
g

Look at the different ways that you will want to access a file.
Learn different file formats.
Learn about indexing a file.

Look at the functions that will enable you to work with the
Medium Code file.

Storing Data in a Disk File

Asyou begin accepting data in your application, you'll want to be able to save it so that
you can access it later. To do this, you use disk files. By storing information on a disk
drive, you’ll be able to access it at a later time.

Note: Many beginning C books cover disk files. In addition to covering
such concepts as naming them, they also cover the basics of opening,
reading, writing, and seeking within them. Much of this will be covered
in today’s material; however, many of the basics will be skimmed over. If
you find the amount of information isn’t adequate, then you should
reference a beginning C book such as Teach Yourself C in 21 Days.

A Review of the Terminology Used
with Files

Before examining the concepts involved in using data in a disk file, a few terms should
be reviewed to ensure that you understand them. Many of these terms have been used
throughout this book. The terms that you should be familiar with are 1/0, fields,
records, data files, and databases. Figure 17.1 helps to show the relationship of these
terms.

I/O is an abbreviation for Input/Output. Many programmers use the term 1/O to
stand for any action that results in information flowing into, or out of, a computer
program. Input is information flowing in; output is information flowing out.
Information will flow into the Record of Records! application in two different ways.
One is by being entered into the entry and edit screens. The other is by retrieving a
record from the data file. Information is output in two ways also. It is output to the
disk file when it is saved. It is also output to the reports that will be presented on Day
19.

A field is an individual piece of data. Because data is simply information, a field is
simply a piece of information. In the Record of Records! application, there are a
multitude of fields. Examples of some of the fields are medium code, group name,
song title, and type of music.

A record is a group of related fields. In the Record of Records! application, there are
several different records used. The smallest record used is the medium code record,
which contains two fields, a medium code, and a medium description.

A data file is a group of related records that are stored on a secondary medium such
as a disk drive. When you save records, they create files. In the Record of Records!
application, you have three different data files. They are the Mediums, Groups, and
Albumes.

A database is a group of related data files. Often, the files in a database can be related
to each other. For example, in the Record of Records! application, the Mediums file can
be related to the Albumsfile via the medium code field. This Groups file can be related
to the Albums file via the group name field. In both the examples, an identical field
appears in both files. It is these fields that cause the files to be related.

Database

Data File Record
P TP
VD vD
AL AL
RC RC
DD DD
cD cD

"

Fields

Figure 17.1. The relationship between the file terms.

533

o ® DAY ®
17 File Routines: The First Step
4

534

File Formats

Asstated before, files are stored on disks. In working with these disk files, there are two
things that you must be aware of. The first is the mode of the file. The second is the
format.

File Modes

There are two different modes for disk files. These are binary mode and text mode.
When you initially open a file for use, you specify which of these two modes you will
be using. Because the two modes operate differently, you should understand them.

If you are using text mode, then several translations will occur automatically as you
work with the data. Because of this, the text mode is sometimes referred to as translated
mode. Following are the translations:

0O Carriage-return-line-feeds (CR-LF) are translated into a single line feed (LF)
on input.

0 A line-feed character (LF) is translated to a carriage-return-line-feed (CR-LF)
on output.

O A Control+Z is translated as the end of the file. On input, the Control+Z
character is removed (if possible).

A file opened in binary mode doesn’t do the translations of a text mode file. In fact,
abinary file doesn’t do any translations. This means that data is stored exactly as it is.

When you open a file, you specify which mode you want to use, binary or text. In
addition, you must specify the type of access that you will need with the file. There
are several different accesses that can be specified. The modes that can be used are read
(r), write (w), and append (a). If a file is opened to be read, then it cannot be written
to or appended to. A file can be opened to both read and write by including a plus sign
after the read (r) or write (w). If you open as w+ (write plus), then it will allow reading
of and writing to a file. If the file already exists, it will be truncated to a zero length.

Note: Using the standard C file functions is covered in most beginning C
books. File functions will be used and explained in some detail later. If
you find that you need to know more, then you should consult either
your compiler manuals or a beginning C book.

File Formats

In addition to different modes, files can also have different formats. The format of a
file is how it is stored on the disk drive. Many C programmers learn to work with flat
files; however, this is only one of many different formats of files. Today, you will be
presented with three different formats; flat files, comma delimited files, and custom
file formats.

Flat Files

With a flat file, information is written straight to the disk one record at a time. The
text isn’t provided with any special format. If you use an operating system command
tolist the file (such as the DOS TYPE command), you will see the raw data in the file.

In the Record of Records! application, each of the three entry and edit screens wrote the
structuresto the disk drive. These structures were creating a flat file on your disk. Each
time you pressed the function key to add a record, a new record was added to the end
of the flat file associated with that screen. You can list this information out. In doing
so, you'll find that it is almost always readable. You’ll also notice that each record takes
the same amount of space. Following is an example of what a flat file might look like:

DDD12/25/98DIME DINNER DRINKS 000.10
SAK02/14/92SMILING APPLE KINGS 002.95
BEJ10/23/793BIG EAGLE JIGS 010.99
JIMS03/13/93JAR MACARONI SALAD 004.95

Note: Numbers in a flat file may be stored as characters or as numbers. If
they are stored as numbers, then they will appear differently than what
was previously shown. For example, if you write a numeric value that was
stored in an integer to a disk file, it would take the same space as an
integer. If you wrote the number 65, it would be stored as “A”—the
character representation (ASCII) of the number.

Comma Delimited Files

Commadelimited files are most often seen with older spreadsheet applications. Many
commercial database applications will read in and write out comma delimited files.
A comma delimited file writes a record to the file field-by-field. Each field is separated
by acomma—~hence the name. Inaddition, text fields are enclosed in quotes. Numeric
fields are typically written as characters. This means that if you type a comma

535

536

File Routines: The First Step

delimited file, you’ll know exactly what is in the file. Following is an example of what
a portion of a listed comma delimited file may look like:
“DEANNA”,35,701/01/92",”Body Bui lding”,

“CONNIE™,21,712/25/93",”Square Dancing”,
“JOE”,54,701/14/91" ,”Knitting”,

Custom File Formats

There are a multitude of custom file formats. Many of these formats have standards
surrounding them. Among these standards are C-tree, Btrieve, dBase, and Vsam.
These are just a few of the many different file formats.

There are several reasons to have a custom file format. The main reason is to protect
your data from other programs. An additional reason for the creation of custom files
is based on usage. Depending on how your application works, you may need to create
special features in your data.

One common feature that is incorporated into many—nbut not all—file systems is
indexing. Files can either contain built-in indexes or separate files can be created that
index other files. The files that you add to the Record of Records! application will be a
combination of flat files and index files.

Working with an Indexed File

Using an index allows quick access to a large data file. An index file is a separate file
from the data file. Because an index contains a smaller amount of information, more
of it can be read and manipulated quicker than the data file itself.

An index file generally contains the key field and a pointer. The key field is the field
that will be used to sort the file. The pointer will contain the offset into the data file
for the corresponding data record. Figure 17.2 illustrates a basic index and data file.

Index File Data File

TP
¥D

AL
RC
DD
cD

N

[KEY [OTHER DATA |
Figure 17.2. An index file and a data file.

o
=
n|=a oo |w

PRGN R RN

>

Not all index files are the same. Index files can be created in two ways. They can be
sorted or they can be linked. A sorted index file requires that every time you write a
record to the index file, it is written in the correct order on the disk. This means that
several records may need to be moved around each time a new index record is added.
The index shown in Figure 17.2 was sorted.

\ Tip: If the index file will be small enough that you can read it into

memory in its entirety, then using a sorted index can be time saving.
) 3

A linked index requires more work; however, it doesn’t require that you do as much
rewriting and moving of data records on the disk drive. A linked index works like a
linked list. Using pointers, you keep track of the next index record. Thisis in addition
to the key field and the pointer to the data record. If you will only be accessing your
records in a single order, such as alphabetically, then you only need one additional
pointer. Ifyou will be navigating forward and backward through your data, then you’'ll
need two pointers. Figure 17.3 illustrates a linked index that has the capability to
navigate forward and backward.

Index File Data File

fHesder Record
1 TP 2
2 vD
3 AL
4 RC
5

[

TP
2 [v

s |a
RC
DD

cD

‘ KEY| NEXT ‘PF\EVIOUS|DATA F\EC‘ [KEY [oTHER DaTA |

Figure 17.3. A linked index.

el oo |e

wl|o||e| =

oo || w|n =
&

You should have noticed by now that the data file is stored independent of the indexed
file. As new data file records are created, you simply add them to the end of the data
file. The index file is then manipulated depending on whether you are using a sorted
or linked index. In a linked index, you can also simply add the new index record to
the end and then adjust the pointersaccordingly. In the Record of Records! application,
you will use a linked index containing the key field, a pointer to the corresponding data
record, a pointer to the next record, and a pointer to the previous record.

537

538

File Routines: The First Step

Using a File

With the Record of Records! application, you’ll need to be able to perform several file
I/0O functions. These I/O functions will use a data file and a linked index. The
functions that you need are the following:

0O Opening the file.

Closing the file.

Adding a record.

Updating or changing a record.
Deleting a record.

Finding the next record.

o o o o o g

Finding the previous record.
O Finding a specific record.

Using the indexed file and the data file, you’ll be able to do all of these tasks. Before
detailing each of these, you first need to be aware of the structures that will be needed.

The medium file will have both an index file and a data file. When working with the
Record of Records! application, you’ll read and write directly from structures. The
index file will be kept in one structure and the data will be kept in another structure.
The data file’s structure will be the same structure that you have been using all along:

typedef struct

{
char code[2+1];
char desc[35+1];

} MEDIUM_REC;

The index file will be a new structure that needs to be added to the RECORDS.H
header file that contains all the structures. The index structure for the medium code
screen should be:

typedef struct

{
char code[2+1];
unsigned short prev;
unsigned short next;
unsigned short data;

3 MEDIUM_INDEX;

As you can see, this structure contains a field, code, for the key field. In addition, it
contains three variables that will be used to hold record numbers. The record numbers
will be for the previous index record, the next index record, and the address of the data
in the data file. You will see each of these record numbers used as the file is
manipulated.

There will be one additional piece of information needed. This is a header record for
the index file. This header record was shown in Figure 17.3. This record will contain
the address of the first sorted records in the index file so that you will know where to
begin reading the index records. The header will also contain the number of records
in the file. For the Record of Records! application, the header information will be read
and written without the use of a structure. You will see this later.

Preparation for the New I/O Functions

Before jumping into the 1/0 functions, you should make some modifications to your
TYAC.H header file. This header file should be modified to include several defined
constants that will be used with the 1/0 functions. In the next sections, you will create
several functions that will be added to your TYAC.LIB library. These functions will
be generic 1/0O functions that will be used by the specific screens to work with the
indexed data files.

Several defined constants will be used in thefile I/0O routines. These defined constants
will be used to describe errors that may occur asyou are doing file routines. You should
add the following to your TYAC.H header file.

/* ________________________________ *
* FILE 1/0 Errors/Flags *
K */

#define NO_ERROR 00

#define OPEN_ERROR 01

#define CREATE_ERROR 02

#define USER_CREATE_ERR 03

#define SEEK_ERROR 04

#define WRITE_ERROR 05

#define READ_ERROR 06

#define CLOSE_ERROR 07

#define NOT_FOUND 08

#define PREVIOUS_REC 01

#define NEXT_REC 00

/* ________________________________ *
* Numeric Conversion Flags *
K e e e e e e */

539

540

File Routines: The First Step

#define PACK_ZERO 01 /* For packing numerals */
#define NO_PACK 00 /* w/ zeros at the front */

Asyou can see, most of these constants define errors. The PREVIOUS_REC and NEXT_REC
will be used for moving through the database. The pAck_zero and No_PAck constants
are conversion flags that will be detailed later.

Before jumping into the specific changes for the Record of Record! application screens,
the following are prototypes for functions that will be created and described.

int open_files(char *, char *);

int close_files(void);

int update_header(void);

int get_rec(int, FILE *, int, int, char *);

int put_rec(int, FILE *, int, int, char *);

You should add these prototypes to the TYAC.H header file. The following sections
will present each of these functions.

Opening the FILES: open_files()

Before being able to work with files, you need to first open them. The open_filesQ
function presented in Listing 17.1 opens both an index and a data file.

Listing 17.1. OPENFILE.C. Opens an index and

@ a data file.

1: [
2: * Program: OPENFILE.C

3: * Authors: Bradley L. Jones

4: * Gregory L. Guntle

5: *

6: * Purpose: Opens a file - Sets two global variables

7: * nbr of rec in file and the starting record

8: * in alpha.

9: *

10: * Enter with:

11: * idx = Name of index file

12: * db = Name of data file

13: *

14: * Returns:

15: 0 = No Error

16: * >0 = Error - see DEFINES in TYAC.H for FILE 1/0
17:

18: * =*/
19:

20: #include <stdio.h>

21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
A47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:

67:
68:
69:

#i

/*

nclude “tyac.h”

Global Variables */

extern FILE *idx_fp;
extern FILE *db_fp;
extern int nbr_records;
extern int start_rec;

in

{

* OPEN_FILES *

/
t open_Tfiles(char *idx, char *db)

int rv = NO_ERROR;
int cr_flg = FALSE; /* Assume file exist */ 17

/* Open index file first */
if((idx_fp = fopen(idx, “r+b”)) == NULL)
{
/* Doesn’t exist - create it */
if((idx_fp = fopen(idx, “w+b)) == NULL)
rv = CREATE_ERROR;
else
cr_flg = TRUE; /*Indicates no hdr exist yet */

}

/* Open Database File - as long as no previous errors */
if (rv == NO_ERROR)
{
/* Open existing file */
if((db_fp = fopen(db, “r+b”)) == NULL)
{
/* Create new DB file */
if((db_fp = fopen(db, “w+b”)) == NULL)
rv = CREATE_ERROR;
3
¥

/* Only continue if no errors above */
if (rv==NO_ERROR)
{
/* Get number of records */
if (Icr_flg) /* File exist - get hdr record */
{
rv = get_rec(0, idx_fp, sizeof(int), O,
(char*) &nbr_records);

/* Get starting record # */
if (rv == 0)

continues

541

542

File Routines: The First Step

Listing 17.1. continued

70: {

71: rv = get_rec(0, idx_fp, sizeof(int), sizeof(int),
72: (char *) &start_rec);

73: 3}

74: }

75: else

76: {

77: nbr_records = 0; /* New file - no records yet */
78: start_rec = 1;

79: }

80: 3}

81:

82: return(rv);

83: }

Anal iS The open_files() function makes se_zveral assymptic_ms. First, it assumes
)’5 that you will have several external variables defined (lines 23 to 27). These

external variables must be declared or else open_fites() function will fail.
Each of these variables is important. The idx_fp is a file pointer that will be used with
for the index file. The db_fp is a file pointer that will be used for the data file.
nbr_records Will be filled with the number of records in the file pointed to be the
db_fp. The start_rec variable will be used to contain the record number for the first
sorted record, or the starting record. The starting record’s number and the number
of records will initially be obtained from the header record when the file is opened.

Note: Later, you will see that these variables can be set up at the begin-
ning of your applications. All the I/O functions will use these variables.

You call this function with the names of the index file and the data file that you want
opened. The function then attempts to open the index file first in line 39. The file is
opened using the fopen() function. By passing it the value of “r+b, you are
attempting to open an existing file for reading and writing in binary mode. If the file
does not exist, an error will be returned. Line 42 handles this by then attempting to
create the file. If the file can’t be created, then rv is set to show an error return value
of cREATE_ERROR. Earlier, you defined crREATE_ERROR in your TYAC.H header file. If
thefile didn’t exist and was successfully created, then aflag, cr_fig, isset to TRUE. This
will be used later to indicate that the header information needs to be set up.

Line 49 checks to see if there was an error with the index file. If there wasn’t, then the
same processes are repeated for opening the data file in lines 52 to 57.

If there hasn’t been an error up to this point, then the header information can be set
up. Line 61 begins the process of setting up the header file information. Line 64 checks
the cr_fig, to see if a new file was created. If a new file wasn’t created, then line 66
calls the get_rec() function to read an integer from the index file. This integer is
placed in the global variable nbr_records. Ifthe read was successful, then asecond read
of the index is done to retrieve the address of the starting record, start_rec.

Note: The get_rec() function is a new function that will be covered in
the next section. 17

If the index file was created, then lines 77 and 78 set the two global variables,
nbr_records and start_rec. The number of records is set to zero because there are no
records. The start_rec is et to 1 because there are no records in the file. With this,
the header information is set up and the files are ready to use.

Getting a Data Record: get _rec()

The get_rec() function enables you to get a record. Listing 17.2 presents this
function.

Listing 17.2. GETREC.C. Getting a record—the get_recQ

Type function.

1: [
2: * Program: GETREC.C

3: * Authors: Bradley L. Jones

4: * Gregory L. Guntle

5: *

6: * Purpose: Reads a record from a file.

7: *

8: * Enter with: rec = record # to retrieve

9: * FILE * = FILE ptr to Ffile

10: * rec_size= size of record

11: * offset = any offset to adjust to (hdr?)

12: * buff = place to put information being read
13: *

14: * Returns: O = No Error

15: * >0 = Error - see DEFINES in TYAC.H for FILE 1/0

continues

543

544

File Routines: The First Step

Listing 17.2. continued

16: * =*/
17:

18: #include <stdio.h>

19: #include “tyac.h”

20:

21: int get_rec(int rec, FILE *fp, int rec_size, int offset, char
*buff)

22: {

23: int rv = NO_ERROR;

24:

25: if (rec == 0) /* Getting Index Header ? */

26: rec++; /* Adjust to fit into formula */

27:

28: /* Seek to position */

29: if (fseek(fp, (rec-1)*rec_size+offset,

30: SEEK_SET) == 0)

31: {

32: /* Read information */

33: if (fread(buff, rec_size, 1, fp) 1= 1)

34: rv = READ_ERROR;

35: }

36: else

37: rv = SEEK_ERROR;

38:

39: return(rv);

40: 3}

Anal | The get_rec() function requires several parameters. The first, rec, is the
YS number of the record to retrieve. Each record is numbered sequentially

from the beginning to the end of thefile. The first record is one, the second
is two, and so on. The second parameter, fp, is the file pointer. Thiswill be the opened
file that the record is retrieved from. The third parameter, rec_siize, is the size of the
information or record to be read. The offset, or forth parameter, is the size of the
header record in the file if there is one. This offset is needed to adjust for the room
taken by the header record. The last parameter, buff, is the area to store the
information being read.

The get_rec() function calculates where the record is in the file. This is done by using
the record number that tells how many records into the file the record is. The record
number is multiplied by the size of each record. Actually, one less than the record
number is used so that the value gives the distance into the file that the record is. A
final adjustment, by adding the size of the header information, provides the exact
location.

This calculation can be seen in line 29 of the get_rec() function. Reviewing the
function, you can see how thisworks. Line 25 checks to see if the record number being
retrieved is zero. If a header record or other miscellaneous data is being retrieved, then
the record number won’t be applicable, so zero will be passed. Because the formula
for calculating the position subtracts one, the record number has one added. This
allows the final result to be zero.

Line 29 uses the formula for calculating where the record will be located. Using the
fseek() command, the position in the file is set to the location that was calculated.
If the placement of the position is successful, then line 33 reads the information into
the buffer, buff. In the cases of either the seeking or the reading failing, defined error
constants are placed in the return value variable, rv. With that, the function ends.

Writing a Data Record: put_rec()

While you can retrieve records with a get_rec() function, you can put records back
with a put_rec() function. The put_rec() function enables you to write a record at
aspecific location in the file. This function will look almost identical to the get_rec()
function with the exception of the error constants that are used and the use of furite)
instead of fread(). Listing 17.3 presents the put_rec() function.

Listing 17.3. PUTREC.C. Writing a record—the put_rec()

Type function.

1: [
2: * Program: PUTREC.C

3: * Authors: Bradley L. Jones

4: * Gregory L. Guntle

5: *

6: * Purpose: Writes a record to a file.

7: *

8: * Enter with: rec = record # to write

9: * FILE * = FILE ptr to file

10: * rec_size= size of record

11: * offset = any offset to adjust to (hdr?)

12: * buff = place which holds the data to write

13: *

14: * Returns: O = No Error

15: * >0 = Error - see DEFINES in TYAC.H for FILE 1/0
16: * */
17:

18: #include <stdio.h>
19: #include “tyac.h”

continues

545

File Routines: The First Step

Listing 17.3. continued

21: int put_rec(int rec, FILE *fp, int rec_size, int offset, char

*buff)
22: {
23: int rv = NO_ERROR;
24:
25: if (rec == 0) /* Writing Index Header ? */
26: rec++; /* Adjust to fit into formula */
27:
28: /* Seek to position */
29: it (fseek(fp, (rec-1)*rec_size+offset,
30: SEEK_SET) == 0)
31: {
32: /* Write the information */
33: if (fwrite(buff, rec_size, 1, fp) == 1)
34: fFlush(fp);
35: else
36: rv = WRITE_ERROR;
37: }
38: else
39: rv = SEEK_ERROR;
40:
41: return(rv);
42: }

Anal | Asstatedalready, thislisting isvirtually identical to the get_rec() function
W described earlier. Line 29 seeks the position that the record is to be written
~ to. If successful, line 33 writes the information that is in the buffer, buff,
to the location. If information was already at that particular location, then it will be
overwritten. If not, then new information will be added to the file.

Updating the Header Record:
update header()

When adding new records to the database, you’ll need to update the header
information aswell. Asstated earlier, the index files will have header information. This
header information will be the number of records in the file and the record number
of the first sorted record. Listing 17.4 includes a function that updates this header
information.

ﬂpe Listing 17.4. UPDHDR.C. The update_header() function.
1:

/o
2: * Program: UPDHDR.C

546

3: * Authors: Bradley L. Jones

4: * Gregory L. Guntle

5: *

6: * Purpose: Updates the header info of the Index.

7: *

8: * Enter with: All variables are global

9: *

10: * Returns: O = No Error

11: * >0 = Error - see DEFINES in TYAC.H for FILE 1/0
12: * */
13:

14: #include <stdio.h>
15: #include “tyac.h”

17: /* Global Variables */
18: extern FILE *idx_fp;
19: extern FILE *db_*fp;

20: extern int nbr_records;
21: extern int start_rec;

22:

23:

24: int update_header()

25: {

26: int rv = NO_ERROR;

27:

28: /* Update number of records */

29: rv = put_rec(0, idx_fp, sizeof(int), O,
30: &nbr_records);

31: if (rv == 0)

32: {

33: rv = put_rec(0, idx_fp, sizeof(int), sizeof(int),
34: &start_rec);

35: 3}

36:

37: return(rv);

38: }

Anal 1 You should notice that this function doesn’t take any parameters. This is
W because the function expects global variables to be available. The global
~ variables are the same as those presented in the open_files() listing
(Listing 17.1). They are the index file pointer (idx_fp), the data file pointer (do_fp),
the number of records (nbr_records), and the starting record number (start_rec).
External declarations in lines 18 to 21 help to inform that this function requires these
global variables.

Line 29 uses the put_rec() function to write the number of records. From the earlier
discussion, you should be able to understand the parameters being passed. The first
parameter for record number is set to zero, thus stating that there isn’t a record

547

548

File Routines: The First Step

number. The second parameter, idx_fp, shows that the index file is being updated.
The third parameter shows that the size of the data being written is an integer. The
fourth parameter gives the offset to be added. This is zero because the number of
records is first in the file. The last parameter is the address of the nbr_records. This
is typecast to a character pointer to avoid a warning when you compile.

If the number of records is written successfully, then the starting record is updated in
line 32. This uses a second call to put_rec() with only a slight difference. Instead of
the fourth parameter being zero, it is sizeof(int). This allows the start_rec value
to be written at an offset of one integer into the file.

Closing the Files: close_ files()

Just as you opened a file before using it, when you are done with a file, you need to
close it. In Listing 17.5, the close_files() function performs the closing functions
for the global file pointers that were opened.

Listing 17.5. CLOSFILE.C. Closing a file—the

ﬂpe close_files() function.

1: [
2: * Program: CLOSFILE.C

3: * Authors: Bradley L. Jones

4: * Gregory L. Guntle

5: *

6: * Purpose: Closes both the index and DBF file.

7: * Also, updates the hdr information.

8: *

9: * Enter with:

10: *

11: * Returns: O = No Error

12: * >0 = Error - see DEFINES in TYAC.H for FILE 1/0
13: * =*/
14:

15: #include <stdio.h>
16: #include “tyac.h”

18: /* Global Variables */
19: extern FILE *idx_fp;
20: extern FILE *db_fp;

21: extern int nbr_records;
22: extern int start_rec;

25: int close_files()

26: {

27: int rv = NO_ERROR; /* Assume no errors will happen */
28:

29: /* Close data file first */

30: if (fclose(db_fp) == 0)

31: {

32: /* Update hdr record in INDEX file */
33: rv = update_header();

34:

35: if (rv == 0)

36: {

37:

38: FFlush(idx_fp);

39: }

40:

41: if (fclose(idx_fp) =0) 17
42: rv = CLOSE_ERROR;

43: }

44: else

45: rv = WRITE_ERROR;

46:

47: return(rv);

48: }

Anal ' This function again includes the external declarations in lines 19 to 22. In
)’5 line 30, the function uses the fclose() function to close the data file. If

successful, theindex will be closed. Before closing the index file, the header
information should be updated. This is done in line 33 using the update_header()
function thatwas described earlier. If the update of the header was successful, then line
38 calls fFiush O to ensure that the information is actually written to the file and not
held in a buffer. Line 41 then closes the index file. Any errors are returned in line 50
to the calling function.

Note: Several C functions were used without explanation. These were
fopenQ), fclose(), fread(), fwrite(), and FFlush(). These are standard
functions. If you need more information on these functions, they are in
most beginning C books. In addition, they should be covered in your
compiler’s function reference materials.

549

550

File Routines: The First Step

Working with the Medium
Screen

With the functions presented, you are ready to begin modifying the Record of Records!
application so that it will be able to work with files. You will start with the medium
screen. Before beginning, however, you should add the previous five functions to your
TYAC.LIB library. You should have already added the prototypes to the header earlier
today.

Before adding the processes of manipulating medium records, you will need to make
afew modifications to the RECOFREC.C source file. The global variables needed by
many of the functions have to be declared. You should add the following global
declarations to the beginning of the RECOFREC.C source file.

FILE *idx_*Fp; /* Index File Ptr */

FILE *db_fp; /* Data file */

int nbr_records; /* Total # of recs */

int start_rec; /* Starting rec for alpha */

int disp_rec;

Thefirst four of these variables will be used in the ways described before. The disp_rec
variable will be used to hold the record number of any record that is currently being
displayed.

The RECOFREC.H header file should receive a few modifications also. To this
header file, you should add the prototypes of a few new functions that will be created
later today. By adding them now, you will be ready to dive into the medium code’s
file I/O functions. The following function prototypesshould be inthe RECOFREC.H
header file medium code prototypes.

/* ______________________________ *
* Prototypes for medium screen *
K e e e e */

int do_medium_actionbar(void);
void display_medium_help(void);

void display_context_help(char *, int);
void display_cntxt_help_msg(char *, char *, char *);

void clear_medium_fields(void);

int verify_mdata(void);
int add_mdata(void);

int add_medium_rec(void);
int del_med_rec(void);
int proc_med_rec(int);

Note: Earlier today you were asked to modify the RECORDS.H header
file. Make sure that you added the medium code’s index file structure:

typedef struct

{

char code[2+1];
unsigned short prev;
unsigned short next;

unsigned short data;

3 MEDIUM_

INDEX;

In addition to the RECORDS.H header file, the RECOFREC.C file, and the
RECOFREC.H header file, the MEDIUM.C file will also need several changes.
Following is an updated MEDIUM.C file.

Type

Listing 17.6. MEDIUM.C. The medium screen’s main file.

O©CoO~NOUDMWNLE

NNNNNNNNRPRRRRRERRERRR
NOUIRWNRPOOONOUDWNROI &

/*
* Filename: medium.c
*
* Author: Bradley L. Jones
* Gregory L. Guntle
*
* Purpose: Allow entry and edit of medium codes.
*
* Note: This listing is linked with RECofREC.c
* (There isn’t a main() in this listing!)
* */
#include <stdlib._h>
#include <stdio.h>
#include <string.h>
#include <conio.h> /* for getch() */
#include “tyac.h”
#include “records.h”
/* ____________________ *
* prototypes *
A e e e e */
#include “recofrec.h”
void draw_medium_screen(void);
void draw_medium_prompts(void);
continues

551

552

File Routines: The First Step

Listing 17.6. continued

28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:

void display_medium_fields(void);

int clear_medium_fields(void);

int get_medium_data(int row);
int get _medium_input_data(void);
void display_medium_help(void);

int add_mdata(void);

/* Global variables */
extern FILE *idx_fp; /*
extern FILE *db_fp; /*
extern nbr_records; /*
extern int start_rec;

extern int disp_rec;

/'k ___________________ *
* Defined constants *
o */

Main File ptr to data file */
Data file */
Total # of rec for mediums */

#define MEDIUM_IDX “MEDIUMS. 1DX”
#define MEDIUM_DBF “MEDIUMS .DBF”

#define HELP_DBF “MEDIUM.
/* ________________________ *
* structure declarations *
K e e */

MEDIUM_REC medium;

HLP”

MEDIUM_REC *p_medium = &medium;

MEDIUM_REC med_prev;

/*

* do_medium_screen()
*

*/

int do_medium_screen(void)

{

int rv;

/* Open both Index and DBF

file */

if ((rv = open_files(MEDIUM_IDX, MEDIUM_DBF)) == 0)

{

/* Setup for adding new records at beginning */
memset(&med_prev, “\0”, sizeof(med_prev));

disp_rec = 0;
clear_medium_fields(Q);
draw_medium_screen();

/* Initialize displaying rec # */

77: get_medium_input_data();

78: rv = close_files(); /* Close IDX and DBF file */
79: 3}

80: else

81: {

82: display_msg_box(“Error opening MEDIUM files...”,

83: ct.err_fcol, ct.err_bcol);

84: }

85: return(rv);

86: 1}

92: void draw_medium_screen(void)
93: { jL77

96: draw_borders(* MEDIUM “); /* draw screen bckgrnd */

98: write_string(“ File Edit Search Help”,

99: ct.abar_fcol, ct.abar_bcol, 1, 2);

100: write_string(

101: “<Fl=Help> <F3=Exit> <F4=Save> <F7=Next> <F8=Prev>"
“<F10=Actions>",

102: ct.abar_fcol, ct.abar_bcol, 24, 3);

104: draw_medium_prompts(Q);
105: display_medium_fields(Q);

111:

112: void draw_medium_prompts(void)

113: {

114: write_string(“Medium Code:™,

115: ct_fld_prmpt_fcol, ct.fld_prmpt_bcol, 4, 3);
116: write_string(“Medium Description:”,

117: ct.fld_prmpt_fcol, ct.fld_prmpt_bcol, 6, 3);
118: }

119:

123:
124: void display_medium_fields(void)
125: {

continues

553

554

File Routines: The First Step

Listing 17.6. continued

126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:

write_string(“__", ct.fld_fcol, ct.fld_bcol, 4, 17);
write_string(“

ct_fld_fcol, ct.fld_bcol, 6, 24);
/* display data, if exists */

write_string(medium.code, ct.fld_fcol, ct.fld_bcol, 4
write_string(medium.desc, ct.fld_fcol, ct.fld_bcol, 6

int get_medium_input_data(void)

{

int position,
rv,
loop = TRUE;

/* Set up exit keys. */

, 17)3
, 24);

static char fexit_keys[19] = { F1, F2, F3, F4, F5, F6,

F7, F8, F10,

ESC_KEY, PAGE_DN, PAGE_UP, CR_KEY,
TAB_KEY, ENTER_KEY, SHIFT_TAB,
DN_ARROW, UP_ARROW, NULL };

static char *exit_keys = fexit_keys;
getline(SET_EXIT_KEYS, 0, 18, 0, 0, 0, exit_keys);

/*** setup colors and default keys ***/

getline(SET_DEFAULTS, 0, 0, 0, 0, 0, 0);

getline(SET_NORMAL, 0, ct.fld_fcol, ct.fld_bcol,
ct.fld_high_fcol, ct_.fld_high_bcol, 0);

getline(SET_UNDERLINE, 0, ct.fld_fcol, ct.fld_bcol,
ct.fld_high_fcol, ct.fld_high_bcol, 0);

getline(SET_INS, 0, ct.abar_fcol, ct.abar_bcol, 24, 76, 0);
position = O;
while(loop == TRUE) /** get data for top fields **/
switch((rv = get_medium_data(position)))
{
case CR_KEY
case TAB_KEY
case ENTER_KEY :
case DN_ARROW : /* go down a field */
(position == 1) ? (position = 0) : position++;

175: break;

176:

177: case SHIFT_TAB :

178: case UP_ARROW : /* go up a Ffield */

179: (position == 0) ? (position = 1) : position—;
180: break;

181:

182: case ESC_KEY :

183: case F3 : /* exit back to main menu */

184: iT((yes_no_box(“Do you want to exit?”,
185: ct.db_¥fcol, ct.db_bcol)) == “Y”
)

186: {

187: loop = FALSE;

188: }

189: break;

190: 17
191: case F4: /* add data */

192: rv = add_mdata(Q);

193: if (rv == NO_ERROR)

194: {

195: /* Reset display counter */

196: display_msg_box(“Added record!”,

197: ct.db_fcol, ct.db_bcol);

198: disp_rec = 0;

199: clear_medium_fields(Q);

200: draw_medium_screen();

201: position = O;

202: }

203: else /* Only do next part if File 1/0 */

204: if (rv > NO_ERROR)

205: {

206: display_msg_box(“Fatal Error writing data...”,
207: ct.err_fcol, ct.err_bcol);

208: exit(l);

209: }

210: break;

211:

212: case F5: /* Change Record */

213:

214: rv = add_mdata(Q); /* updates record */

215:

216: if (rv == NO_ERROR)

217:

218: /* Reset display counter */

219:

220: display_msg_box(*““Record Updated!”,

221: ct.db_fcol, ct.db_bcol);

222: }

223: else

224: if (rv > NO_ERROR)

continues

555

File Routines: The First Step

Listing 17.6. continued

225: {
226: display_msg_box(“Fatal Error writing
data...”,

227: ct.err_fcol, ct.err_bcol);

228:

229: exit(l);

230: }

231: break;

232:

233: case F6: /* Delete data */

234: /* Make sure rec is on screen */

235: iT((yes_no_box(“Delete record ?7,

236: ct.db_fcol, ct.db_bcol)) == “Y~*)

237: {

238: rv = del_med_rec();

239: if (rv == NO_ERROR)

240: {

241: disp_rec = 0;

242: clear_medium_fields();

243: draw_medium_screen();

244: }

245: else

246: {

247: display_msg_box(“Fatal Error deleting
data...”,

248: ct.err_fcol, ct.err_bcol);

249: exit(l);

250: }

251: }

252: break;

253:

254: case F7: /* Next record */

255: rv = proc_med_rec(NEXT_REC);

256: if (rv == NO_ERRCR)

257: {

258: draw_medium_screen();

259: }

260: else

261: {

262: display_msg_box(“Fatal Error processing
data...”,

263: ct.err_fcol, ct.err_bcol);

264: exit(l);

265: }

266: break;

267:

268: case F8: /* Prev record */

269: rv = proc_med_rec(PREVIOUS_REC);

556

270: if (rv == NO_ERROR)

271: {
272: draw_medium_screen();
273: }
274: else
275: {
276: display_msg_box(“Fatal Error

processing data...”,
277: ct.err_fcol, ct.err_bcol);
278: exit(l);
279: }
280: break;
281:
282: case F10: /* action bar */
283: rv = do_medium_actionbar();
284:
285: ifC rv == F3) 17
286: {
287: iT((yes_no_box(“Do you want to exit?”,
288: ct.db_fcol, ct.db_bcol)) == “Y”)
289: {
290: loop = FALSE;
291: }
292: }
293:
294: position = O;
295: break;
296:
297: case PAGE_DN : /* go to last data entry field */
298: position = 1;
299: break;
300:
301: case PAGE_UP : /* go to first data entry field */
302: position = 0O;
303: break;
304:
305: case F1: /* context sensitive help */
306: display_context_help(HELP_DBF, position);
307: break;
308:
309: case F2: /* extended help */
310: display_medium_help(Q;
311: break;
312:
313: default: /* error */
314: display_msg_box(“ Error “,
315: ct.err_fcol, ct.err_bcol);
316: break;
317:
318: } /* end of switch */

continues

557

File Routines: The First Step

Listing 17.6. continued

319: } /* end of while */

320:

321: return(rv);

322: }

323:

324 /F *

325: * get_medium_data() *

326: Fommm */

327:

328: int get_medium _data(int row)

329: {

330: int rv;

331:

332: switch(row)

333: {

334: case 0 :

335: rv = getline(GET_ALPHA, 0, 4, 17, 0, 2, medium.code);
336: break;

337: case 1 :

338: rv = getline(GET_ALPHA, 0, 6, 24, 0, 35, medium.desc);
339: break;

340: }

341: return(rv);

342: %}

343:

344 /F— *

345: * clear_medium_fields(Q *

346 Ko */

347:

348: int clear_medium_fields(void)

349: {

350: getline(CLEAR_FIELD, 0O, 3, 0, 0, 0, medium.code);
351: getline(CLEAR_FIELD, 0, 36, 0, O, O, medium.desc);
352:

353: return(0);

354: }

355:

356 /F-—mm
357: add_mdata()

358:
359: Returns O - No Errors

360: >0 - File 1/0 Error

361: <0 - Missing info before can store
362: Ko */
363:

364: int add_mdata(Q)

365: {

366: int rv = NO_ERROR;

367:

L S N R I

% X X % %

558

368: /* Verify data fields */

369: rv = verify _mdataQ);

370: if (rv == NO_ERROR)

371: {

372: /* Check to see if matches old rec */

373: /* If match - then update db record only */

374: if (stricmp(med_prev.code, medium.code) == 0)

375: rv = put_rec(disp_rec, db_fp,

376: sizeof(medium), 0, (char *)&medium);

377: else

378: /* Keys no longer match - need to

379: add this key as a new one */

380: rv = add_medium_rec(Q);

381: }

382:

383: return(rv);

384: } 17
385:

386: /[*
387: * Verify data fields *
388: Foo——————— */
389: int verify_mdata()

390: {

391: int rv = NO_ERROR;

392:

393: if(strlen(medium.code) == 0)

394: {

395: display_msg_box(“Must enter a medium code”,

396: ct.err_fcol, ct.err_bcol);

397: rv = -1;

398: }

399: else

400: if(strlen(medium.desc) == 0)

401: {

402: display_msg_box(“Must enter a description”,

403: ct.err_fcol, ct.err_bcol);

404: rv = -1;

405: }

406:

407: return(rv);

408: }

409:

4101 /F e - *
411: * display_medium_help(Q *
4127 */
413:

414: void display_medium_help(void)

415: {

416: int ctr;

417: char *scrnbuffer;

continues

559

File Routines: The First Step

Listing 17.6. continued

418:

419: char helptext[19][45] = {

420: “ Medium Codes™,

421: e - 7,
422: “r,

423: “The medium code screen allows you to track”,
424: “the different types of storage mediums that”,
425: “your music collection may be stored on. A”,
426: “two character code will be used in the”,

427: “Musical Items Screen to verify that the”,

428: “medium type is valid. The code entered will”,
429: “need to match a code entered on this screen.”,
430: “Additionally, the codes will be used in”,

431: “reporting on your musical items.”,

432: s

433: “An example of a musical code might be:”,

434: “r,

435: “ CD - Compact Disk”,

436: * CS - Cassette”,

437: “ VD - Video”,

438: e e e - ” 3}
439:

440: scrnbuffer = save_screen_area(2, 23, 28, 78);
441: cursor_off();

442:

443: grid(3, 23, 28, 77, ct.shdw_fcol, ct.bg bcol, 3);
444: box(2, 22, 29, 78, SINGLE_BOX, FILL_BOX,

445: ct_help_fcol, ct.help_bcol);

446:

447 : for(ctr = 0; ctr < 19; ctr++)

448: {

449: write_string(helptext[ctr],

450: ct.help_fcol, ct.help_bcol, 3+ctr, 32
451: }

452:

453: getch(Q);

454: cursor_on();

455: restore_screen_area(scrnbuffer);

456: }

457:

458: /*———
459: * Function: display_context_help()

460: * Purpose: Display help that is relative to a specific
461: * field on a specific screen.

462: * Notes: The Ffirst parameter needs to be one of the
463: * following:

464: * medium - medium screen

465: * album - musical items screen

466: * group - groups screen

560

o % ok X ok % X %

467: * It is assumed that each screen has its own *

468: * file *
4691 K */
470: void display_context_help(char *file, int position)
471: {

472: FILE *fp;

473: int ctr;

474: char *rv = NULL;

475:

476: char *bufferl = NULL;

477: char *buffer2 = NULL;

478: char *buffer3 = NULL;

479:

480: /* allocate buffers */

481: bufferl = (char *) malloc(65 * sizeof(char));

482: buffer2 = (char *) malloc(65 * sizeof(char)); 17
483: buffer3 = (char *) malloc(65 * sizeof(char));

484:

485: /* make sure all the allocations worked */

486: if(bufferl == NULL || buffer2 == NULL || buffer3 == NULL)
487: {

488: display_msg_box(“Error allocating memory...”,
489: ct.err_fcol, ct.err_bcol);

490: iT(bufferl != NULL)

491: free(bufferl);

492: if(buffer2 1= NULL)

493: free(buffer2);

494: if(buffer3 1= NULL)

495: free(buffer3);

496:

497: return;

498: }

499:

500:

501: fp = fopen(File, “r”);

502:

503: if(fp == NULL) /* make sure the file was opened */
504: {

505: display_msg_box(“Error opening help file...”,

506: ct.err_fcol, ct.err_bcol);

507: }

508: else

509: {

510: /* spin through to appropriate record */

511: for(ctr = 0; (ctr < (position * 3)) ; ctr++)
512: {

513: rv = fgets(bufferl, 65, fp);

514: if(rv == NULL)

515: break;

516: 3}

continues

561

File Routines: The First Step

Listing 17.6. continued

517:

518: /* ready to read three lines */

519: ifC rv I= NULL || position == 0)

520: {

521: rv = fgets(bufferl, 65, fp);

522: ifC rv 1= NULL)

523: {

524: rv = fgets(buffer2, 65, fp);

525: if(rv = NULL)

526: rv = fgets(buffer3, 65, fp);

527: }

528:

529: display_cntxt_help_msg(bufferl, buffer2, buffer3);
530: }

531: else /* hit end of file too soon */

532: {

533: display_msg_box(“Error in message file...”,

534: ct.err_fcol, ct.err_bcol);

535: }

536:

537: fclose(fp);

538: }

539:

540: free(bufferl);

541: free(buffer2);

542: free(buffer3);

543: }

544:

545 /e *
546: * display_context_help() *
547: *-—r o */
548: void display_cntxt_help_msg(char *stringl,

549: char *string2,

550: char *string3)

551: {

552: char *scrn_buffer = NULL;

553: scrn_buffer = save_screen_area(10, 16, 10, 70);

554: cursor_off();

555:

556: grid(11, 16, 10, 69, ct.shdw_fcol, ct.bg_bcol, 3);
557: box(10, 15, 11, 70, SINGLE_BOX, FILL_BOX,

558: ct.help_fcol, ct_help_bcol);

559:

560: write_string(stringl, ct.help_fcol, ct.help_bcol, 11, 14);
561: write_string(string2, ct_help_fcol, ct.help_bcol, 12, 14);
562: write_string(string3, ct.help_fcol, ct.help_bcol, 13, 14);
563:

564: write_string(“Press any key to continue...”,

565: ct.help_fcol, ct.help_bcol, 14, 14);

562

566:
567:
568:
569:
570:
571:
572:
573:
574:
575:
576:

getch(Q);
cursor_onQ;
restore_screen_area(scrn_buffer);

}

/* *
* end of listing *

|

Note: The Record of Records! application should have several source files, 17
not including the TYAC.LIB library. The files that you should be compil-
ing include the following:

RECOFREC.C ABOUT.C
ALBMABAR.C GRPSABAR.C MEDMABAR.C MMNUABAR.C
MEDIUM.C ALBUMS.C GROUPS.C

To these files, you should link the TYAC.LIB library, which should
contain all the functions learned in this book, including those from earlier
today.

Warning: If you compile the medium screen with these changes, you will
get unresolved externals for del_med_rec(), proc_med_rec(), and
add_medium_rec(). These new functions will be covered later today.

Ana|y5| While the MEDIUM.C listing is getting long, you should already have

much of it from previous days. This should be a nearly complete
MEDIUM.C sourcefile. You'll still need a few additional files to complete

the file I/0O functions and eliminate the unresolved externals that you received from
the new MEDIUM.C listing.

563

564

File Routines: The First Step

The changes in this listing start in line 35. The prototype for add_mdata() has been
placed here. Following this, several external declarations are present in lines 38 to 42.
These are the same external declarations that you have seen before. In lines 49 to 51,
you should also notice a change. There is now more than one MEDIUM file. The
defined constant mepium_DBF contains the name of the data file. The MEDIUM_IDX
contains the name of the index file. The help file has remained the same.

Expert Tip: It’s best to give an index and a data file the same name
\ with the exception of the three character extension. For example, both
. of the Medium Code’s files are called MEDIUMS.

Line 59 has also been added. A second Medium Code structure has been declared.
This will be used to hold information about a Medium Code record before changes
are made. You will see it used later.

The changes up to this point have been outside of the actual medium code functions.
Line 72 starts the internal changes. When you first enter the medium code, you will
open the files. Line 70 does this using the open_files() function described earlier.
The index and data files for the Medium Codes screen are opened. If the open was not
successful, then an error message is displayed in line 82. If the open was successful,
then the med_prev Medium Code structure is cleared out with memset(). The
currently displayed record, disp_rec is set to zero because no records are being
displayed. The functions that were present in this function before are then called.
When the user is done entering data, then line 78 calls the close_files() function
from earlier.

Indisplaying thescreen, only aminor change is made. Inline 101, the keys’ values that
are displayed on the bottom of the screen are updated. The F4, F7, and F8 keys are
added to the display. You can choose to display whichever keys you believe are the
most important. In the get_medium_input_data() function, a similar change is made
in lines 146 to 153. The setup for the getline() function needs to be changed to
include the newly-added key functions. The F4, F5, F6, F7, and F8 keys need to be
added, bringing the total number of exit keys to 18.

In the following switch statement, cases will need to be added or modified for each
of these new function keys. The F4 key in lines 191 to 210 is used to add new data
to the data file. This function calls the add_mdata() function. If the add_mdataQ
function doesn’t return an error, then line 196 displays a message box stating that the
add was successful. The screen is then cleared for a new record to be added. Line 198

then resets the current display record field, disp_rec. The fields and screen are then
cleared, followed by the position being reset to zero. Ifthe add_mdata() returned afatal
error—a number greater than no_errorR(0)—then a message is displayed and the
program instantly exits.

Tip: You should avoid exiting in the middle of a program, such as
\ shown in line 208. The only time that you should do this is when a
. fatal error occurs. You should allow the program to continue running

whenever possible.

The add_mdata() function isin lines 356 to 384. This function does two things. First,
it callsa function, verify_mdata(), that checks to see that all of the data entered is valid
(line 369). It then checks to see if the user is adding a new record, or trying to add a
record that was changed. This is done starting in line 374. Using stricmp(), the code
from the current entry and edit screen, medium. code, is compared to the medium code
in med_prev . code. If the two values match, then line 375 calls put_rec() to update the
current record, disp_rec. Inthe case of anew record, the med_prev.code will be empty
so they won’t match. The codes also won't match if the user changed the one on the
screen. In these cases, line 380 calls the add_medium_rec() function to add a new
record. The add_medium_rec() function will be presented later today. As you should
be able to see, the add_mdata() function effectively covers both adding and updating
records.

Warning: The add_mdata() function makes the assumption that the code
’ field is required. This assumes that the verify_mdata() will give an error if
® the medium. code field is blank. If this key field is allowed to be blank, then
this logic will need to be modified; however, you shouldn’t allow the key
field to be blank.

Before returning to the new cases in the get_medium_data() function, you should first
look at the verify_mdata() function in lines 386 to 408. This function contains all
the edits that need to occur before the record can be added to the data file. By
consolidating them in a function such as this, it makes them easy to call from several
functions. You'll see that the add functions aren’t the only function that verifies the
data.

565

566

File Routines: The First Step

The F5 case in lines 212 to 231 is used to update a record that is currently displayed
on the screen. This function is nearly identical to the add function. The difference is
that the change function doesn’t refresh the screen. The record that was updated
remains displayed.

The F6 case in lines 233 to 252 is used to delete or remove a record from the dataand
index files. Because deleting a record involves permanently removing it from the file,
this case starts by prompting the user to ensure that the user really wants to delete. This
is done in line 235 using the yes_no_box() function. If the user does want to delete,
then the del_med_rec() function is called to actually do the delete. This function
is covered later today. If the del_med_rec() function is successful, then the screen is
refreshed for a new record (lines 241 to 243); otherwise, a fatal error message
is displayed and the program exits.

TheF7 function in lines 254 to 266 and the F8 function in lines 268 to 280 are similar.
These functions display the next or previous record. They start by calling the
proc_med_rec() function, which retrieves a record. One of the two defined
constants—NEXT_REC Or PREVIOUS_REc—are passed to signal if the next or previous
record is retrieved. The proc_med_rec() function will be covered later today. If the
proc_med_rec() function is successful, then the medium screen is redrawn to display
the new information. If the function wasn’t successful, then a fatal error is displayed
and the program exits.

With this, you have seen all the changes made to MEDIUM.C. Three new functions
were called that need to be created, add_medium_rec(), del_med_rec(), and
proc_med_rec(). These are each covered next.

Adding a Record:
The add_medium_rec() function

The add_medium_rec() function is used to add a new record to the medium code data
file. This function is presented in Listing 17.7.

Type Listing 17.7. ADDMREC.C. Adding a medium code.

1: /*

2: * Filename: ADDMREC.C

3: *

4: * Author: Bradley L. Jones

5: * Gregory L. Guntle

6: *

7: * Purpose: Adds a record to a MEDIUM DB
8: *

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
A47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:

*/

#include
#include

#include
#include

/* Global
extern ME

extern MEDIUM_REC med_prev;

extern FI1
extern FI
extern in
extern in

add_m
Retur

int add_m
{

int resu

MEDIUM_INDEX temp, newrec;

int rv =
int foun

<stdio.h>
<string.h>

“records.h”
“tyac.h”

variables */
DIUM_REC medium;

LE *idx_fp;

LE *db_fp;

t nbr_records;
t start_rec;

edium_rec(Q);
ns: 0O - No Error

>0 Error - see defines at top of file

edium_rec()
It;

NO_ERROR;
d;

int srch_rec;

/*

/*
/*
/*
/*

Record structure with data */

Main File ptr to data file */
Data file */

Total # of recs */

Starting rec for alpha */

nbr_records++;
if (nbr_records == 1) /* 1s this Ffirst record */
{
temp.prev = 0;
temp.next = 0O;
temp.data = 1; /* First rec in data file */
strcpy(temp.code, medium.code);

/* Write Index record */
rv = put_rec(nbr_records,

if (rv
{
/* S

idx_fp, sizeof(temp),

sizeof(int)*2, (char *) &temp);

== NO_ERROR)

tore data */

/* No Error from prior */

rv = put_rec(nbr_records, db_fp, sizeof(medium),
0, (char *) &medium);

}

/* Update Alpha starting pointer */

if (rv
{

== NO_ERROR)

567

File Routines: The First Step

Listing 17.7. continued

59: start_rec = nbr_records; /* Update global starting point */
60: rv = update_header();

61: }

62:

63: fflush(idx_fp);

64: Ffflush(db_fp);

65: 3}

66: /* Need to search for appropriate place to hold rec */
67: else

68: {

69: found = FALSE;

70: srch_rec = start_rec;

71: while (!found)

72: {

73: rv = get_rec(srch_rec, idx_fp, sizeof(temp),

74: sizeof(int)*2, (char *)&temp);

75: /* Proceed only if no errors */

76: if (rv == NO_ERROR)

77: {

78: /* Compare two keys - ignoring CASE of keys */
79: result = stricmp(medium.code, temp.code);

80: if (result < 0) /* New key is < this rec key */
81: {

82: /* Found place to put it - store info */

83: found = TRUE;

84: /* See if this new rec is < start rec */

85: /* If so - need to adjust starting ptr */

86: if (srch_rec == start_rec)

87: start_rec = nbr_records;

88:

89: /* First build new Index rec & store new rec */
90: newrec.prev = temp.prev; /* Previous record */
91: newrec.next = srch_rec; /* Point to record just read */
92: newrec.data = nbr_records; /* Pt to data */
93: strcpy(newrec.code, medium.code);

94: rv = put_rec(nbr_records, idx_fp, sizeof(newrec),
95: sizeof(int)*2, (char *)&newrec);
96: if (rv == NO_ERROR)

97: {

98: /* Update previous rec */

99: temp.prev = nbr_records;

100: rv = put_rec(srch_rec, idx_fp, sizeof(temp),
101: sizeof(int)*2, (char *)&temp);
102:

103: /* Now write data - only if no errors */

104: if (rv == NO_ERROR)

105: {

106: /* Now write data */

107: rv = put_rec(nbr_records, db_fp, sizeof(medium),

568

108: 0, (char *)&medium);

109: }

110:

111: /* Now check on updating Next pointer */

112: /* 1s there a ptr pointing to this new rec ?*/
113: if (rv == NO_ERROR)

114: {

115: if (newrec.prev 1=0)

116: {

117: rv = get_rec(newrec.prev, idx_fp, sizeof(temp),
118: sizeof(int)*2, (char *)&temp);
119: if (rv == NO_ERROR)

120: {

121: temp.next = nbr_records;

122: rv = put_rec(newrec.prev, idx_fp, sizeof(temp),
123: sizeof(int)*2, (char *)&temp);
124: }

125: }

126: }

127:

128: }

129: }

130: else /* new rec >= alpha, adjust ptr */

131: {

132: if (temp.next == 0) /* End of chain - add to end */
133: {

134: found = TRUE;

135:

136: /* Build Index record */

137: /* Point backwards to prev rec */

138: newrec.prev = srch_rec;

139: newrec.next = 0; /* There is no next rec */
140: newrec.data = nbr_records;

141: strcpy(newrec.code, medium.code);

142: rv = put_rec(nbr_records, idx_fp, sizeof(newrec),
143: sizeof(int)*2, (char *)&newrec);
144: if (rv == NO_ERROR)

145: {

146: /* Update previous rec */

147: temp.next = nbr_records;

148: rv = put_rec(srch_rec, idx_fp, sizeof(temp),
149: sizeof(int)*2, (char *)&temp);
150: if (rv == NO_ERROR)

151:

152: /* Now write data */

153: rv = put_rec(nbr_records, db_fp, sizeof(medium),
154: 0, (char *)&medium);

155: }

156: }

157: }

continues

569

570

File Routines: The First Step

Listing 17.7. continued

158: else /* Not at end - get next rec ptr */
159: srch_rec = temp.next;

160: }

161: }

162: else

163: found = TRUE; /* Exit because of error */
164: } /* End of While */

165:

166: /* Update starting alpha ptr in hdr */
167: if (rv == NO_ERROR)

168: {

169: rv = update_header();

170: }

171:

172: /* Makes sure file gets updated */
173: fflush(idx_fp);

174: fflush(db_fp);

175:

176: } /* End else */

177:

178: return(rv);

179: }

Anal | This function has the overall objective of adding a record. While the
W process of physically adding the record is simple, you must also update the
index file. It is the updating of the index file that gives this function its size.

This function starts out in the same way as most of the other I/O functions. External
declarations are provided for the file pointers, the Medium Code structures, and the
header information (lines 16 to 22). In the add_medium_rec() function, several
additional variables are declared. These include two new MEDIUM_INDEX Structures,
temp and newrec. In addition to these, a found flag is declared.

Line 38 starts the code off by adding one to the total number of records in the file.
Because we are adding a record, this will be accurate. Line 39 then checks to see if this
is the first record being added to the file. The first record is a special case. If this is the
first record, then the values in the temp index structure are all set. The record number
of the prev and next records are zero because neither exists. The data record is one
because this will be the first record in the data file. Line 44 copies the medium code
into the key field of the temp index’s data field. With this, the temp index structure
is set up and ready to be written.

Line 46 uses the put_rec() function to write the index record from the temp structure
that you just set up. The first parameter, nbr_records Will be one because this is the

first record. The idx_fp is the pointer to the index file. The third parameter is the size
of the data you want to write. In this case, it’s the size of the index structure, temp.
The fourth parameter is the offset for the header record. You should remember that
the header record is two integers. The last parameter is the temp structure that you just
set up.

If the writing of the index structure was successful, then the data record is written in
line 51. Its parameters are similar. The fourth parameter is zero because the data file
doesn’t have a header.

In line 55, you are still working with the addition of the first record in the file. If the
addition of the first record was successful, then the start_rec is set to nbr_records.
This could have been set to one because you know that there is only one record in the
file. Line 59 ensures that the header record is updated. The addition of the first record
is completed with the flushing of the index and data files with the ffiush () function.
This ensures that the records are written to the disk and not buffered.

If the record isn’t the first record to be added to the files, then the processing is
different. The else statement starting in line 66 works with this. If the record isn’t the
first in the file, then you need to find the area in the indexes where the record is to be
placed. Consider adding the code GG to Figure 17.3. While the GG would be added
to the end, the NEXT, PREVIOUS, and DATA REC values all need to be
determined. Figure 17.4 shows the result of adding GG to the files in Figure 17.3.

Index File Data File

Header Recerd 1 E)
1 e Taib ., I
2 | w o |1]2 f'fa AL
3 AL |6 |03 /4 P
a [Re [T 7Ea | oo
5 oD 746 (% rf-”fﬁ n
6 |~co |s[h3lb—" " rgg
e e I
[kev|mext [previous [pata Rec| [KEY [oTHER DATA

Figure 17.4. Adding the GG code.

As you can see from the figure, the new records are added to the end of both the index
and the data file. Before they can be added, the next and prev record numbers need
to be determined. In addition, the next and prev index records need to be updated
with the new record.

571

572

File Routines: The First Step

The process that will be used to do this is relatively easy to follow. Starting with the
first record signified by start_rec (line 69), each index record will be read into a
temporary index structure, temp, (line 72) using a while loop, which starts in line 70.
If the read is successful, then the code from the read index record is compared to the
code from the record that is being added. The if statement in line 79 checks to see
if the code from the screen is less than the code that was was just read into temp. If not,
then another index record may need to be read unless the end of the index file has been
reached.

The else statement to the ifin line 79 checks the end of file condition. If the end has
been reached, then the index structure for the new record to be added can be set up
inlines 137 to 139. The prev record isset to the current srch_rec because it is the last
record in the index file. The next record is set to zero because there isn’t a next record.
The data record is the last record in the data file. You should note that the last record
in the data file is the same as the number of records, nbr_records. After copying the
code to the new index structure, the record iswritten to the file in line 141. If the write
is successful, then the previous record needs its next record number updated so that
it points to the new last number. This is done in lines 146 to 148. If this update is
successful, then the index file is up-to-date. All that’s left is to write the new data
record. This is done in line 152.

If the code was less than the search record read in line and if it was not the last sorted
record in the index file, then the white loop starts again. The while loop continues
until the new code is either the last code in the sort order, or until it is greater than
a code that is already in the file.

If the new code is found to be greater than a code already in the file, then the if in line
79 takes effect. This starts by marking the found flag as TRUE in line 82 because a
position has been found. Inline 85, atest is done to see if the new code is the first record
in sorted order. If so, then the start_rec field is set to the record number of the new
code. In any other cases, the starting record number remains what it was.

Lines 89 to 91 set up the new record’s index structure, newrec. This is similar to what
was explained earlier in adding the index record as the last sorted record. The
difference is that the previous record is set to the previous record from the last record
read. The next record is then set to the last record read. The data record is set to the
last record in the datafile, which, asstated earlier, is the same as the number of records.
If this sounds confusing, then take it one step at a time and use Figure 17.4 as a
reference.

Tip: If you are confused, read the previous paragraph slowly and step
\ through the process while looking at Figure 17.4.

A3

Once these values are set, then the new index record is written to the end of the index
file (line 93). If there were no problems, then the last search record that was read has
its prev record number changed to point to the new record (line 98). This record is
then updated with a call to put_rec(). Line 105 then updates the data record if the
previous updates were successful.

This writes or updates all of the records except one. The new record isn’t yet a part

of the next record pointers. The record that comes before the new record needs to be

updated so that its next pointer points to the new number. Lines 114 to 124 do just 14
this. The new records previous record number is used to find the record that needs to

be updated. Once found, the record’s next record humber is set to the last record

number and is then updated in line 121.

If the updating is successful, then line 168 updates the header. Lines 172 and 173 force
the writes to occur. The function then ends with the return of any error values in line
177.

Deleting a Record:
The del _med_rec() function

The del_med_rec() function is used to remove a record from the medium data file.
Listing 17.8 presents the DELMREC.C source file, which contains this function.

ﬂpe Listing 17.8. DELMREC.C. Deleting a medium code.

1: /*

2: * Filename: DELMREC.C

3: *

4: * Author: Bradley L. Jones

5: * Gregory L. Guntle

6: *

7: * Purpose: Deletes a record from the DB

8: * It adjusts the pointers and takes the last DB
9: * record and overwrites the record being deleted
10: *

11: * */
12:

continues

573

574

File Routines: The First Step

Listing 17.8. continued

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:

#include <stdio.h>

#include “records.h”
#include “tyac.h”

/* Glo
extern
extern
extern
extern
extern
extern
extern

int de
{

int

bal variables */

MEDIUM_REC medium; /* Record structure with data */
MEDIUM_REC med_prev;

FILE *idx_fp; /* Main File ptr to data file */
FILE *db_fp; /* Data file */

int nbr_records; /* Total # of recs */

int start_rec; /* Starting rec for alpha */

int disp_rec;

1_med_rec(Q)
rv = NO_ERROR;

MEDIUM_INDEX temp, delrec;
MEDIUM_REC hold_data;

int chg;

int srch_rec;

/> A

re we trying to delete a blank record */

if (disp_rec !'= 0) /* No - then proceed */

{

/* Get the index info for this rec */

rv = get_rec(disp_rec, idx_fp, sizeof(delrec),
sizeof(int)*2, (char *)&delrec);

if (rv == NO_ERROR)

{

/* Are there any pointers in this rec
If both pointers are 0 - then this must
be the only record in the DB */
ifT (delrec.prev == 0 && delrec.next == 0)
{
nbr_records = 0;
disp_rec = 0;
start_rec = 1;
3
else
{
chg = FALSE;
srch_rec = 1; /* Start at first */

/* Are we deleting the starting alpha record ? */

if (disp_rec == start_rec)
{

start_rec = delrec.next; /* Reset pointer */
}

62:

63: /* Go until all the ptrs have been adjusted */
64: while ((srch_rec <= nbr_records) && (rv == NO_ERROR))
65: {

66: /* Get record */

67: rv = get_rec(srch_rec, idx_fp, sizeof(temp),
68: sizeof(int)*2, (char *)&temp);

69: if (rv == NO_ERROR)

70: {

71: /* Does this rec prev pointer need to

72: be adjusted */

73: it (temp.prev == disp_rec)

74:

75: chg = TRUE;

76: temp.prev = delrec.prev;

77:

78: d jL77
79: /* Since moving last record up - need

80: to adjust pointers to last one as well */
81: if (temp.prev == nbr_records)

82:

83: chg = TRUE;

84: temp.prev = disp_rec;

85: 3}

86:

87: if (temp.next == disp_rec)

88:

89: chg = TRUE;

90: temp.next = delrec.next;

91: 3}

92:

93: /* Since moving last record up - need

94: to adjust pointers to last one as well */
95: if (temp.next == nbr_records)

96:

97: chg = TRUE;

98: temp.next = disp_rec;

99: }

100:

101: /* Data Ptr - match last nbr */

102: if (temp.data == nbr_records)

103: {

104: chg = TRUE;

105: temp.data = delrec.data;

106: }

107:

108: /* Only update rec if change has been made */
109: it (chg)

110: {

111: /* 1s this the rec to overlay ? */

continues

575

File Routines: The First Step

Listing 17.8. continued

112: if (srch_rec == nbr_records)

113: {

114: /* Write new index into deleted spot */

115: rv = put_rec(disp_rec, idx_fp, sizeof(temp),
116: sizeof(int)*2, (char *)&temp);

117: 1

118: else

119: {

120: /* Rewrite index back to file in same position */
121: rv = put_rec(srch_rec, idx_fp, sizeof(temp),
122: sizeof(int)*2, (char *)&temp);

123: 1

124: chg = FALSE;

125: 3}

126:

127: if (rv == NO_ERROR)

128: {

129: /* Go to next record */

130: srch_rec++;

131: 3}

132: }

133: }

134:

135: /* DATA */

136: /* Delete the data rec - take last rec in data

137: file and overwrite the rec to be deleted

138: then search for index pointer that points to

139: the last rec and update its data pointer. */
140: f (rv == 0)

141:
142: /* Only need to adjust if not last rec */

143: if (nbr_records != disp_rec)

144: {

145: /* Get last rec */

146: rv = get_rec(nbr_records, db_fp, sizeof(medium),
147: 0, (char *)&hold_data);

148: if (rv == 0)

149: {

150: /* Overwrite data to delete w/Last one */
151: rv = put_rec(delrec.data, db_fp, sizeof(medium),
152: 0, (char *)&hold_data);

153: 3}

154: }

155: }

156:

157: nbr_records—; /* Adjust global number of recs */
158: }

159: if (rv == NO_ERROR)

160: {

-

576

161: rv = update_header();

162: }

163:

164: /* Makes sure file gets updated */
165: FFlush(idx_fp);

166: fflush(db_fp);

167: }

168: }

169: else

170: boop(); /* Let them know - can’t delete blank rec */
171:

172: return(rv);

173: }

Anal | The deleting of records operates differently from the adding of a record.
)’5 When deleting a record, you need to adjust the index record numbers just

as you did when you added a record; however, additional complexity
exists. You could simply adjust the index pointers. Thiswould prevent you from being
able to access the deleted record; however, this would put holes throughout your files.
To prevent these holes, when a record is deleted, the last record in the file is moved
forward and placed in the hole that is created. This is exactly what the del_med_rec()
function does.

Note: If you wanted to be able to undelete a record, then you shouldn’t
move the last record to the deleted record. By adding a flag to your
record, you could signal whether a record had been deleted or not.
Additional functions could then read the flag to determine if the record
should be used.

Thedel_med_rec(startswith the same external declarations asthe add_medium_rec)
function. In addition, several local variables are declared in lines 29 to 33. The first,
rv, isthe returnvalue in line 29. Two additional vepi1um_1nDEX structures are declared,
temp and delrec. The temp structure will be used to hold a temporary index structure.
The delrec index structure will be used to hold the index record for the record that
is being deleted. The chg field is used as a flag to signal if a change has been made to
a given index record. If a change is made to an index record then it will need to be
updated in thefile. The srch_rec variable is used to keep track of the index record that
is currently being checked. As you will see later, each record in the index is checked
to ensure that it doesn’t need to be adjusted.

17

577

578

File Routines: The First Step

Line 36 starts the processing by ensuring that the user wasn’t adding a new record. If
arecord hasn't been added, then it can’t be deleted. Line 170 beeps the computer with
the boop O functionif the user isn’tediting arecord. If the user is editing arecord, then
line 39 retrieves the index record for the currently displayed information. This index
record is stored in delrec.

Line 46 checks to see if the record being deleted is the only record in the database. You
know a record is the only record if both the prev and next record numbers are zero.
If this is the only record, then lines 48 to 50 set the values of nbr_records, disp_rec,
and start_rec accordingly. Otherwise, the rest of the function is executed.

If there is more than one record in the file, then processing, starting in line 54, is
executed. First, the chg flag is defaulted to FALSE. The srch_rec is initialized to one.
Line 58 checkstosee if the first record in the file is being deleted. Thisis done by seeing
if the current record, disp_rec, is equal to the starting record number, start_rec. If
the first record is the one being deleted, then the start_rec value is adjusted to the
delete record’s next record. Once this is completed, you are ready to loop through the
index file and make all the updates.

The white statement in lines 64 to 133 loops through each record in the index file.
It continues to loop until all of the records have been processed or until there is an
error. Line 67 retrieves the current record, srch_rec, into the temporary index
structure, temp. If there isn’t an error, then line 73 checks to see if the current record
needs the prev record number updated. If the prev record number is equal to the
record that is being deleted, disp_rec, then it needs to be changed. It is changed to
the prev record from the deleted record in line 76. Additionally, the chg flag is set to
TRUE S0 that the record will be updated. Because the last record in the file will be moved
to fill in the deleted record’s position, line 81 is needed. In line 81, the prev value is
checked to see if it is equal to the last record. If the prev record is equal to the last
record, then it is set to the position of the record being deleted. This is because the last
record will be moved to the deleted position.

Lines 87 to 99 are similar to what was just described. Instead of working with the
previous record, these lines work with the next record number pointer.

Line 102 checks the index file's data record number. If this number is pointing to the
last data record in the file, then it will also need adjusted. The last data record will also
be moved tofill in the deleted record’s position. While these lines of code don’t change
the data record’s position, they do go ahead and update the data record flag in the
index records. Later in this function, the data record will actually be moved.

Line 109 checks the chg flag to see if there was a change to a record. If there was a
change, then lines 110 to 123 are executed. If the record that is currently being

processed is the last record in the file (srch_rec isequal to nbr_records), then you will
want to write the record in the deleted records position instead of at the end of thefile.
This is exactly what line 114 does. You should note that disp_rec is the position that
is written to instead of the srch_rec position. If this isn’t the last record in the index
file, then line 121 writes the record back to its current location. If thisis all successfully
accomplished, then line 130 increments the srch_rec counter and the next iteration
of the while loop occurs.

Once you have looped through all of the index records, the delete will be completely

processed. All that will be left to do is delete the actual data record. This is a much

simpler process, which is accomplished in lines 140 to 155. Line 143 checks to see if

the last record is the one being deleted. If the last record is the record being deleted,

then no changes need to be made. If the record being deleted isn’t the last record, then 17
thelastrecordisread in line 146. Thisrecord is then writtenin line 151 to the location

where the deleted record is. This effectively deletes the record.

Inline 157, the number of recordsis adjusted. This s followed by some housekeeping.
In line 161, the header record is updated with the update_header() function. Lines
165 and 166 prevent any buffering of data by forcing the writes with the fflush()
function. With this, the job of deleting a record is complete.

Processing a Record (Next/Previous)

The last function needed before you will be able to compile the medium code without
external errors is the proc_med_rec() function. This function is presented in Listing
17.9, which contains the PROCMREC.C sourece file.

Listing 17.9. PROCMREC.C. Processing the next and
previous records.

\zﬂ
=
D

1: /*

2: * Filename: PROCMREC.C

3: *

4: * Author: Bradley L. Jones

5: * Gregory L. Guntle

6: *

7: * Purpose: Process the requests for getting next/prev
8: * records from the MEDIUM DB

9: *

10: * */
11:

12: #include <stdio.h>
13: #include <string.h>

continues

579

File Routines: The First Step

Listing 17.9. continued

14: #include “records.h”

15: #include “tyac.h”

16:

17:

18: /* Global variables required */

19: extern FILE *idx_fp;

20: extern FILE *db_fp;

21: extern nbr_records; /* Total # of rec for mediums */
22: extern int start_rec;

23: extern int disp_rec;

24:

25: extern MEDIUM_REC medium;

26: extern MEDIUM_REC med_prev;

27:

28: int proc_med_rec(int);

29: int get_med_info(void);

30:

3l: /e *
32: * proc_med_rec *
33: e e */
34:

35: int proc_med_rec(int direct)

36: {

37: MEDIUM_INDEX temp;

38: int rv = NO_ERROR;

39:

40: /* Only do - if there are records in the file */

41: if (nbr_records != 0)

42: {

43: /* Do we just need to display the very first rec */
44: if (disp_rec == 0)

45: {

46: disp_rec = start_rec;

47: rv = get_med_info();

48: }

49: else

50: {

51: /* Get Index ptrs for record on screen */

52: rv = get_rec(disp_rec, idx_fp, sizeof(temp),

53: sizeof(int)*2, (char *)&temp);
54: if (rv == NO_ERROR)

55: {

56: if(direct == NEXT_REC)

57: {

58: if (temp.next == 0) /* There is no other rec */
59: boop(Q); /* No more records */
60: else

61: {

62: disp_rec = temp.next;

580

63: rv = get_med_info();

64: }

65: }

66: else /* Need to go backwards */

67: {

68: if (temp.prev == 0) /* There is no other rec */
69: boop(); /* No more records */
70: else

71: {

72: disp_rec = temp.prev;

73: rv = get_med_info();

74: }

75: }

76: 3}

77: }

78: }

79: else 17
80: boop();

81:

82: return(rv);

83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95: @ *
96:

97: int get_med_info()

98: {

99: MEDIUM_INDEX temp;

100: int rv;

101:

102: /* Get Index record for this Request */

103: rv = get_rec(disp_rec, idx_fp, sizeof(temp),

104: sizeof(int)*2, (char *)&temp);

105: if (rv == NO_ERROR)

106: {

107: /* Now get the actual data record to display */
108: rv = get_rec(temp.data, db_fp, sizeof(medium),
109: 0, (char *)&medium);

110: if (rv == NO_ERROR)

111: {

112: memcpy(&med_prev, &medium, sizeof(medium));

-

get_med_info()

N
*

Handles getting the Index rec, getting the
data pointer from the index and then getting
the appropriate data rec. It then updates
the Global MEDIUM record, as well as updating
a copy of the medium record for later use.

FoF ok X % % ok ok F

ok X X % % ok ok %

*
N

continues

581

582

File Routines: The First Step

Listing 17.9. continued

113: }

114: }

115: return(rv);
116: }

Anal iS This listing shoglq be easi_er _to_follow than the add_medium_recQ) _and
)’5 del_med_rec() listings. This listing enables you to get a next or previous

record from the medium data file. Like all the other functions, this
function also starts with the list of external declarations before starting into the
function in line 35.

Tip: The external declarations could be put into a header file that is
\ included in each of the source files. This cut the amount of code that
LN would need to be written.

Thisfunctioniscalled with a value of either NExT_REC Or PREVIOUS_REC, Which isstored
in the direct parameter. This determines which direction the reading should occur.
In line 41, a test is performed to see if there are any records in the file. If there aren’t
any records, then line 80 beeps the computer. If there are, then the processing moves
toline 44. Line 44 determines if a record is currently being displayed. If the disp_rec
is equal to zero, then there isn’t a record being displayed. In this case, the first record
is set to be the displayed record and the get_med_info() function is called.

The get_med_info() function is presented in lines 97 to 116. This function gets the
record that is in the disp_rec variable. Line 103 gets the index record. If successful,
then line 108 gets the data record based on the index’s data value. Again, if this read
is successful, then this new record is copied into the med_prev structure to be used
elsewhere. With this completed, the new record is stored in the medium code
structure, medium. All that is left to do is redisplay the record, which must be done by
the calling program.

If disp_rec didn’t equal zero when this function was called, then you must determine
the new record before calling get_med_info(). Line 52 starts this process by getting
the index record for the currently displayed data record. If the direction is NEXT_REc,
then lines 58 to 65 process, otherwise, lines 66 to 74 process. In both cases, the
processing is similar. In the case of NExT_REc being the direction, if the index record’s
next value is zero, the end of the file has been reached. In this case, the boop () function

is called to signal the end of the file. If the next value isn’t zero, then it is set to the
disp_rec variable and get_med_info() is called to display the record.

Check Point

This completes the functions that are necessary to compile the Medium Screen
withoutany external errors; however, you still have several holes in your entry and edit

screen. You haven't added any of the file functions to the action bar. In addition, the

action bar contains two additional file functions that haven’t been covered, clear and

Find.... Tomorrow, you'll continue with the Medium Code entry and edit screen.

You'll update the action bar with the functions you created today. In addition, you’ll

add the remaining functions. You’ll also work with the albums screen, which has some 17
slightly different processing. You should update the group screen’s code as a part of

today’s exercises.

Do | DON"T]|

DO complete Exercise 3, which asks you to update the Group’s source files.

Summary

Todaywasabigday. You beganto pull in the mostimportant part of the application—
file access. Today, you learned a little background on file /O and the terms used with
it. Inaddition, you learned about different file modes and different file formats. Using
some of what you should have already learned from your C experiences, you were lead
in the development of an indexed file. You worked with the Medium Code entry and
edit screen to create functions that enabled you toadd, update, and delete records from
your medium codes file. In addition, you created functions that enabled you to
retrieve the next or previous record in alphabetical order from the database. Today’s
material stops short of completing everything you need to know about indexed files
and file 1/0 in the Record of Records! application. Tomorrow will pick up where
today left off and complete the topic.

583

File Routines: The First Step

Q&A

Q Why is there a need for text files to translate the CR-LF characters when
reading and writing the file?

A The C programming language uses a single character to represent CR-LF.
This is the \n character that you use all the time. DOS expects two charac-
ters for this process, a carriage return and then a line feed. Because DOS and
C are expecting different things, there has to be a translation.

Q Are the file 1/0 functions presented today the best ones to use in an
application?

A Not necessarily. Many applications need to be compatible with other custom
formats. In these cases, you will need to use routines that write your data in
the custom format. Additionally, if your application doesn’t need to worry
about quick access to records in order, then the indexing may not be neces-
sary.

Q Is the use of global variables good as shown in today’s listings?

A You should avoid using global variables whenever possible. At times, it
becomes much easier to use global variables than always passing a variable
around. Typically, file pointers are declared globally. Because these variable
are small, they don’t take up much space. You should avoid declaring
variables globally whenever possible.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned.

Quiz
1. What is the difference between input and output?
2. What is a field?
3. What is a record?
4. What is a file?

584

5. What is a database?
6. What is an index file?

7. What is the difference between a file opened in text mode and a file opened
in binary mode?

8. A preexisting file is opened with the a mode of “w+b”. What does this mean?
9. What would Figure 13.3 look like if the “AA” code was added?
10. What would Figure 13.3 look like if the “TP” code was deleted?

Exercises

1. Make sure that you updated your TYAC.LIB library file with today’s library
functions:

17

put_rec()
get_rec()
open_files()
close_files()
2. Create the index structure for the group file and add it to the RECORDS.H
header file.

3. ON YOUR OWN: Add the file functions such as the ones presented today
to the Groups entry and edit screen.

585

